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Abstract

In the last few years, there has been a growing discussion on digital currencies; in par-

ticular, Bitcoin. Yet, empirical studies on Bitcoin adoption and experimentation are limited.

In this paper, we develop a tractable model of Bitcoin experimentation which we then take to

the data. Agents are uncertain about the quality of the underlying technology and update their

beliefs by observing the survival of Bitcoin, which is affected by current and past levels of

adoption. The model predicts that the path of adoption and agents’ beliefs are both S-shaped

over time, and that learning saturates earlier than adoption. We use unique data from the Bit-

coin Omnibus Survey (BTCOS), which provides information on agents’ adoption choices and

beliefs about the medium- to long-term survival of Bitcoin in Canada. We find pieces of ev-

idence consistent with the model. In particular, we find that for most individuals their speed

of learning is currently decreasing, indicating that Bitcoin learning is in an advanced, or satu-

rated, stage. However, the speed of Bitcoin adoption is not globally increasing, suggesting that

Bitcoin experimentation is still in its infancy for some individuals.
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1 Introduction

It is becoming increasingly important to understand what determines the adoption and usage of

private digital currencies. If private digital currencies become more widely adopted, they may

impact the banking sector and interfere with the core functions of central banks (e.g., monetary

policy). In the last few years, there has been an explosion of so-called “crypto-currencies,” with

more than 740 available. These currencies are revolutionizing the business model of online trans-

actions. Among them, Bitcoin is the leader, enjoying the highest market cap and volume, as well

as much more mainstream media attention.1

Bitcoin is a decentralized electronic fiat money with floating value that allows agents to make

peer-to-peer payments and transactions without needing a trusted third party (Nakamoto, 2008;

Böhme et al., 2015). This technological innovation has sparked interest from different academic

fields, ranging from computer science to economics and finance; see Halaburda and Haeringer

(2018) for a recent survey. Still, there is no consensus on whether this new technology will survive

or not (Budish, 2018). Bitcoin and digital currencies appear to be in a nascent stage, where the

transactional motive is small relative to the store-of-value one (Fung et al., 2017). This suggests

that individuals are still experimenting with Bitcoin and learning its potential benefits and costs.

But, how advanced is Bitcoin experimentation? And how advanced is the individuals’ learning

about this new technology? Because of data limitations, these questions remain unanswered.

The small but growing literature on digital currencies is largely silent about these issues. Some

papers focus on the effects of delaying early adopters on the diffusion of Bitcoin (Catalini and Tucker,

2017), whereas others focus on the determinants of the Bitcoin exchange rate, usage, and specu-

lation (Bolt and van Oordt, 2016; Athey et al., 2016). However, because of the lack of micro-data

on agents’ beliefs about Bitcoin survival, empirical studies that focus on Bitcoin adoption and

learning remain somewhat limited.

In this paper, we provide a theoretical and empirical analysis of Bitcoin adoption and learning.

We use unique data from the Bitcoin Omnibus Survey (BTCOS), which is a nationally repre-

sentative survey of Canadians that includes questions related to Bitcoin, as well as demographic

information. Crucially, the BTCOS provides us with information on agents’ adoption decisions,

and also on their beliefs about the medium- to long-term survival of Bitcoin, as well as expected

future adoption. The data uncovers a novel relationship between Bitcoin adoption and agents’

beliefs about its survival, which motivates our economic analysis. Specifically, Figure 1 shows

that agents’ beliefs about Bitcoin survival differs significantly when adoption is either positive or

1In 2017, Bitcoin’s value increased rapidly, hitting historical records. Astonishingly, the price of one Bitcoin

on January 01, 2017 was around US $1000, and it spiked at around US $19000 on December 16, 2017 (Source:

www.coindesk.com). Likewise, the number of Google searches on Bitcoin has also been steadily increasing.
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Figure 1: The Survival Rate and Adoption. The dashed line represents the expected survival rate cumulative

distribution function conditional on no adoption, whereas the solid line is the same conditional on strictly positive

adoption. The two distributions are statistically different. The figure shows that the agents’ beliefs about Bitcoin

survival is affected by adoption.

zero.2 Specifically, Bitcoin adopters are on average more optimistic about Bitcoin survival than

non-adopters.3 This evidence indicates that Bitcoin experimentation may fuel agents beliefs about

Bitcoin which, in turn, may impact future adoption. In other words, beliefs appear to be endoge-

nous to the adoption level, and thus these two processes are likely to reinforce one another.

So motivated, we develop a simple dynamic model of Bitcoin adoption, in which agents’ beliefs

evolve over time depending on their adoption patterns. There is a continuum of risk-neutral agents

that at every period chooses whether to adopt Bitcoin. Agents have heterogeneous adoption costs,

and are symmetrically uncertain about the Bitcoin technology quality, which can be either good

or bad. It is common knowledge that a good technology always survives, but a bad one can break

down with a positive chance.4 Thus, the survival of Bitcoin provides a noisy signal of its qual-

ity. Next, to capture the interplay between agents’ adoption and learning, we assume that a bad

technology is more likely to fail when more people adopt it. This allows us to capture market ex-

perimentation in reduced-form. Starting from a common prior belief that the technology is good,

agents update their beliefs by observing the survival of Bitcoin. Survival fuels adoption, which in

turn speeds up individuals’ learning.5 Thus, adoption and survival rates reinforce one another and

2Both cumulative distributions are significantly different. Differences are deemed statistically significant if the

p-value from the Epps-Singleton two-sample test falls below the threshold of 0.05, i.e., a 95% significance level.
3The conditional mean of the survival rate is greater for adopters (70%) than for non-adopters (43%).
4In other words, we consider an experimentation model with a two-armed bandit whose risky arm yields failures

according to a Poisson process (Keller and Rady, 2015). Its arrival rate is unknown to the agents.
5The speed of learning is endogenous, as in the experimentation literature in small markets (Bolton and Harris,

1999; Keller et al., 2005) and in large ones (Bergemann and Välimäki, 1997; Frick and Ishii, 2016).
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Figure 2: The Dynamics of Adoption, Beliefs, and Survival. Starting from a common prior belief in period t that

the technology is good, current adoption and beliefs affect the survival of Bitcoin, which in turn affect the individual

decision to adopt Bitcoin. The survival rate and current beliefs then influence beliefs in the next period, and so on.

are jointly determined. Figure 2 depicts the dynamics of adoption, beliefs, and survival.

The model predicts sensible relationships between the adoption rate and beliefs. First, the adop-

tion rate and beliefs are S-shaped over time.6 Next, low adoption costs are associated with high

beliefs and adoption at any period. Finally, learning saturates earlier than adoption, meaning that

agents’ learning reaches an advanced phase earlier than the level of adoption does.

We use the BTCOS to test the model predictions. The data allow us to observe (i) adoption

in 2016 and 2017; (ii) survival beliefs from 2017 to 2032 (15-year survival) and; (iii) expected

adoption in 2032. We exploit the structure of the model to construct the adoption and belief paths.

This allows us to have a measure of “past, present, and future” adoption and beliefs. Because

many testable implications of the model rely on the S-shape curvature of the adoption and belief

paths, we test for convexity and concavity, and thereby shed light on the adoption and learning

phases for the Canadian population. We find that, for most Canadians, learning is in an advanced

phase, where the speed of learning is decreasing, or the belief path is a concave function of time.

However, Bitcoin experimentation is not globally advanced. Indeed, for older people, Bitcoin

experimentation is mainly in an initial phase, where the speed of adoption is increasing, or the

adoption path is a convex function of time. The reverse holds for young people. This finding

suggests that young people reach the saturation phase earlier than old ones. In addition, we also

find that young people are associated with more adoption and with more optimistic beliefs about

Bitcoin, which indicates that young people face lower adoption costs. Thus, our analysis suggests

that lowering barriers to adopt may trigger adoption and learning disproportionately, given the

6The S-shaped adoption curve is a well-documented finding in the diffusion literature (Mansfield, 1968;

Gort and Klepper, 1982; Rogers, 2010). Some theories suggest that gradual adoption is purely driven by heteroge-

nous preferences in the population, i.e., that some are naturally early or late adopters (David, 1969). However, other

theories suggest that adoption is driven by a process of contagion, social influence, and social learning; see Young

(2009) and references therein.
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mutual reinforcement of these two processes.

We set up the model in §2, and discuss the data and methodology in §3. We test the model

implications in §4. Finally, we conclude in §5. Omitted proofs are available in the Appendix.

2 A Model Bitcoin Adoption and Learning

The goal of this section is to develop a tractable model that allows us to interpret the data. Time

is discrete and infinite t = 1, 2, . . . ,∞. There is a unit-mass continuum of risk-neutral potential

adopters with the same demographic type. Since identical agents may choose to experiment or not

with Bitcoin, depending on some unobserved characteristic, we assume that agents have heteroge-

neous adoption costs c ∈ [0, c̄] which, for simplicity, are uniformly distributed with c̄ > 1. Thus,

within a demographic type, the average adoption cost is c̄/2 > 0. Now, to compare adoption rates

between demographic types, we assume that each type is characterized by its average adoption

cost. Naturally, adoption costs rise if c̄ rises.

Because Bitcoin is not backed by a central authority, adopting or using Bitcoin is, fundamentally,

risky. We assume that there is an event in which this payment technology does not survive from

one period to the next one. Intuitively, Bitcoin survival may depend on a number of variables,

such as reliability, convenience, security, congestion management, etc. These attributes are hard to

assess without experimentation by the market. For simplicity, we assume that all these attributes

can be summarized into an unknown binary Bitcoin quality variable that can be either good or bad.

The chance that Bitcoin survives depends on its unknown quality and its adoption rate. In par-

ticular, we assume, for simplicity, that a good technology always succeeds, but a bad one is more

likely to fail when more people adopt it. Specifically, if the adoption rate in period t is At and the

technology is bad, then the failure chance in period t is Φ(At) ≡ ϕ + φAt, where ϕ, φ > 0 and

ϕ + φ < 1.7 Thus, detecting the unknown Bitcoin quality is more likely if more people adopt it,

as the chance of failure increases in adoption. This allows us to capture (in reduced-form) market

experimentation (see, e.g., Bergemann and Välimäki, 1997). For some intuition, think of security

breaches and congestion management — two issues that are prevalent in Bitcoin (Gandal et al.,

2018). In the first case, hackers may target their attacks to the Bitcoin network depending on how

many people use Bitcoin; these attacks are more successful when the technology is bad.8 In the

second one, we could imagine that network congestion is also more likely to lead to a system

7Because ϕ > 0, agents can still learn from exogenous sources even if there is no adoption, as in Frick and Ishii

(2016). They consider a model with a continuum of homogeneous agents, in which each agent faces a stopping

problem: when to adopt. They focus on understanding how the nature of learning — namely, whether it is via “good”

or “bad” news — affects adoption patterns.
8Budish (2018) discusses potential collapse scenarios that Bitcoin may face in the future.
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failure when the technology is not good.9

At the initial period, agents hold a prior belief probability ξ̄1 ∈ (0, 1) that the quality of Bitcoin

is good, and thus that it will survive into the next period. At later periods, agents use all available

information up to time t, denoted by Ft, to update their beliefs using Bayes’ Rule. There are two

possible histories. In one, Bitcoin fails and agents perfectly learn that its quality is bad. In the

other, Bitcoin survives and agents remain uncertain about its quality. Let us call ξt+1 the no-failure

posterior probability that Bitcoin is good. Then, by Bayes’ rule:

ξt+1 =
ξt

ξt + (1− ξt)(1− Φ(At))
. (1)

The denominator in (1) is the Bitcoin survival chance between periods t and t+1, and is denoted by

σt→t+1. The actual survival chance of Bitcoin depends fundamentally on its quality. Yet, because

this quality is unobservable, agents believe that with probability σt→t+1 Bitcoin survives an extra

period. Thus, different agents may hold different beliefs about the survival of Bitcoin.

As Figure 2 shows, posterior beliefs ξt+1 are fixed by adoption At and beliefs ξt today. Also,

notice that higher beliefs ξt translate into higher no-failure posterior beliefs: ∂ξt+1/∂ξt > 0. Like-

wise, more current adoption raises posterior beliefs: ∂ξt+1/∂At > 0. For if more people adopt in

period t and Bitcoin survives, then it is more likely that the technology is good. Finally, observe

that agents are more optimistic about Bitcoin as time goes, given no failures — namely, ξt+1 > ξt.

Next, we iteratively apply Bayes rule to express beliefs in future periods as a function of current

beliefs and the observed adoption path. This will be useful to link the theory and data in §3. Take

any period t, a positive integer ∆ ≥ 1, and an adoption path (At+j)
∆−1
j=0 . One can show that

posterior ξt+∆ obeys:

ξt+∆ =
ξt

ξt + (1− ξt)
∏∆−1

j=0
(1− Φ(At+j))

. (2)

As before, the denominator in (2) is the survival chance between periods t and t+∆, i.e., σt→t+∆ .

In each period, agents choose whether to adopt Bitcoin. Adoption is desirable only if the Bitcoin

system survives into the next period (e.g., think that a transaction with Bitcoin takes one period

to be completed). Given beliefs ξt and a (conjectured) adoption rate At, agents with per-period

costs c adopt iff the per-period benefits, which are normalized to one, are greater than the costs,

namely,

ξt + (1− ξt)(1− Φ(At))− c ≥ 0. (3)

That is, agents adopt Bitcoin when the survival rate is high enough, or their adoption costs are

9See Huberman et al. (2017) for a model of Bitcoin congestion and queues, and Chiu and Koeppl (2017) for the

trade-offs between individual and market transactions and their effects on delay.
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low enough.10 Let us call a∗(ξt, At, c) ∈ {0, 1} the optimal individual adoption function when

beliefs are ξt, adoption is At, and costs are c, with the interpretation that a∗(ξt, At, c) = 1 means

“adopt” Bitcoin. As depicted in Figure 2, the survival rate of Bitcoin reinforces adoption, and thus

beliefs and adoption must be jointly determined in equilibrium.

In equilibrium, the adoption rate in any period t must be consistent with the agents’ conjecture,

i.e.:

A∗

t =

∫ c̄

0

[a∗t (ξt, A
∗

t , c)/c̄]dc = [ξt + (1− ξt)(1− Φ(A∗

t ))]/c̄. (4)

Solving for A∗

t yields an adoption function A : [0, 1] 7→ R, which is given by:

A(ξ) ≡
ξ + (1− ξ)(1− ϕ)

c̄ + (1− ξ)φ
. (5)

Appendix A.1 shows that, as agents become more optimistic, adoption rises at increasing rates

— namely, the adoption function is strictly increasing and strictly convex, A′ > 0,A′′ > 0.

An equilibrium is a sequence (a∗t , ξt, A
∗

t )
∞

t=1 solving (1), (3), and (4), with ξ1 = ξ̄1. As illustrated

in Figure 2, conditional upon survival, only one equilibrium path exists: Given beliefs ξ̄1, there is

only a single solution for adoption, namely, A∗

1 = A(ξ̄1). This solution and ξ̄1 uniquely determine

posterior beliefs ξ2 via (1). These beliefs then determine A∗

2 = A(ξ2) via (4)-(5), which together

with ξ2 determine ξ3 via (1), and so on. Altogether, there exists a unique equilibrium path.

We now turn to the testable implications of the model. First, we center on how current beliefs

impact current adoption. The model predicts that adoption A∗

t depends positively on beliefs in that

period ξt, because ∂A/∂ξ > 0 and A∗

t = A(ξt). Second, Appendix A.2 shows that, conditional

upon survival, the path of adoption is increasing and S-shaped. Thus, the initial experimentation

phase is determined by the curve’s inflection point. Let us define the speed of adoption as the

rate of change of adoption. We say that Bitcoin experimentation is in an initial (or, alternatively,

advanced) phase if the speed of adoption is increasing (or, decreasing) in time. In other words,

the convexity and concavity of the adoption S-curve identify initial and advanced experimentation

phases, respectively. Third, along the same line, Appendix A.2 shows that the belief path ξt is also

S-shaped. Thus, an analogous characterization for beliefs applies. We say that learning is in an

initial (or, advanced) phase if the speed of learning is increasing (or, decreasing) in time. Fourth,

Appendix A.3 shows that learning saturates earlier than adoption in the sense that the inflection

point of the belief curve precedes that of the adoption curve.

Finally, observe that variations in beliefs and adoption patterns are driven by variations in the

average adoption cost c̄/2. Indeed, a change in c̄ impacts adoption, which in turn changes beliefs,

and thus adoption etc. Hence, types with the same prior beliefs may hold different posterior beliefs

10Athey et al. (2016) explore a related model with a similar decision rule, where the speed of learning is exogenous.
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provided their average costs differ. Moreover, notice from (4) that if the average adoption cost c̄

falls, the adoption rate A∗

t and beliefs ξt rise in every period. This means that types with lower costs

adopt more (higher A∗

t ) and are more optimistic (higher ξt), and thus they transition to advanced

phases of learning and experimentation earlier than high-cost types.

In summary, the implications of the model are the following:

Predictions. (a) There is a positive relation between adoption A∗

t and beliefs ξt.

(b) Adoption increases over time, conditional upon survival.

(c) Adoption follows an S-shaped path. In the initial phase, it is expected to increase at an accel-

erating rate, while it increases at a decelerating rate in the advanced phase.

(d) Beliefs also follow an S-shaped path. In the initial phase, beliefs increase at an accelerating

rate, while it increases at a decelerating rate in the advanced phase.

(e) Learning saturates earlier than adoption.

(f) If the average adoption cost falls, then adoption and beliefs increase in every period.

3 Data and Methodology

Overview. We use data from the BTCOS to test the model predictions. The data consist of three

waves. Waves 1 and 2 were both conducted in late 2016, resulting in a sample size of N =1, 997

Canadians aged 18 or older. Wave 3 of the BTCOS was conducted a year later (from December

13, 2017 to January 9, 2018), yielding a sample size N = 2, 632.11 In all waves, we use standard

weighting and imputation methods to ensure that the results are representative of the Canadian

population. Table 1 provides a summary statistics of the data.12 Because few individuals responded

to both surveys, we analyze the data as a repeated cross-section, as we explain shortly.

11Wave 3 of the BTCOS was sampled in a similar way to waves 1 and 2, using an online omnibus survey. In wave 3,

115 people had also responded to a previous wave. Of these 115 people, 33 also responded in wave 1, and 82 in wave

2. The majority of responses (82%) were collected on December 13, 2017.
12See Henry et al. (2018, 2019) for more information and description of these data sets.
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Table 1: Summary Statistics

Age High High

Mean Median Female Employment Awareness Propensity Knowledge

Wave 1 47.6 48 51.3% 55.0% 62.0% 22.4% 1.4%

Wave 2 48.0 49 51.6% 55.3% 65.7% 27.7% 10.9%

Wave 1 and 2 47.8 49 51.4% 55.2% 63.9% 25.2% 6.3%

Wave 3 48.0 49 51.4% 55.8% 85.8% 36.7% 19.1%

Notes: Weighted results are based on post-stratification by region, age, and gender in 2016. Table shows the percentage

of each wave with the specified attribute. Employment shows the proportion of individuals who are part-time, full-

time, or self employed. High propensity refers to the proportion of individuals who are identified as having a higher

likelihood to adopt or use Bitcoin. Table 3 has additional information on the construction of this variable. High

knowledge refers to the proportion of individuals who correctly answered three or more skill testing questions about

Bitcoin. Additional information on the construction of this variable can be found in Table 4.

The data not only contains demographic information, but also information about Bitcoin knowl-

edge and adoption propensity. Propensity to adopt is a variable indicating whether an individual

has high or low bias to adopting Bitcoin. We construct this indicator as follows. The BTCOS

asks, “What is your primary reason for owning or not owning Bitcoin?” Individuals who note

that their reason for adopting is a unique feature of Bitcoin (e.g., “the ability to make anonymous

payments”) are categorized as having a high propensity to adopt. Likewise, those who identify a

key feature of Bitcoin as being their reason for choosing not to adopt (e.g., “I am concerned about

lack of oversight from regulatory bodies”) are categorized as having a low propensity, see Table 2.
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Table 2: Propensity to Adopt

Main reason for not owning Bitcoin Wave 1/2 Wave 3

I do not understand/know enough about the technology H 337 671

It is not widely accepted as a method of payment H 91 119

The value of Bitcoin varies too much H 39 110

I use alternative digital currencies (e.g., Ethereum, etc) H 4 5

My current payment methods meet all my needs L 395 473

I do not trust a private currency that is not backed by the central government L 150 213

I do not believe the Bitcoin system will survive in the future L - 157

It is not easy to acquire/use L 69 112

I am concerned about cyber theft L 58 86

I am concerned about lack of oversight from regulatory bodies L 47 78

Other - 24 84

Main reason for owning Bitcoin

I am interested in new technologies H 17 16

It uses secure blockchain technology to prevent loss and fruad H 6 3

It is a cost saving technology H - 6

It allows me to make payments anonymously H 4 5

I do not trust the goverment or the Canadian dollar H 2 3

I do not trust banks H 2 2

It is an investment L 6 61

My friends own Bitcoin L - 17

I use it to buy goods and services on the internet L 4 9

I use it to buy goods and services in physical stores L 8 3

I use it to make remittances or other international payments L 6 1

Other - 3 3

Notes: H denotes high propensity; L denotes low propensity. A dash denotes that the choice was not provided in waves

1 and 2 of the BTCOS. Propensity to adopt Bitcoin is identified based on a respondent’s viewpoint of unique attributes

of Bitcoin. For example, within respondents who have adopted Bitcoin, high propensity individuals view unique

attributes of Bitcoin as the primary reason for adoption, while low propensity individuals selected non-unique Bitcoin

features as the primary reason for adoption. Within non-adopters, low propensity individuals select specific aspects

of Bitcoin as the primary negative reason. Non-adopters who cite lack of acceptance, knowledge, price variance, or

ownership of other digital currencies are identified as high propensity. Individuals who select “other” and provide a

written response are sorted into these categories based on these guidelines.
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We also categorize individuals according to their Bitcoin literacy. Waves 2 and 3 include five

true or false questions. We construct a knowledge score variable to measure performance on this

question. For individuals in waves 2 and 3, we assign pass if they got at least 3 questions correct,

and fail otherwise; see Table 3 for further information.13

Table 3: Knowledge Score

Wave 1 Wave 2 Wave 3

1. Bitcoin allows for direct transactions between two
– 53 51

parties, without a third party involved. (True)

2. The total supply of Bitcoin is fixed. (True) – 15 21

3. All Bitcoin transactions are recorded on a distributed
– 17 19

ledger that is publicly accessible. (True)

4. Bitcoin is backed by the government. (False) – 50 59

5. Bitcoin transactions take place instantaneously. (False) – 5 –

6. The security (i.e., immutability) of the Bitcoin system
– – 4

relies solely on cryptography. (False)

Mean score 0.89 0.92 1.33

Median 0.91 0 1

Notes: This table provides the proportion of individuals who correctly answered each of the true or false knowledge

questions. The correct answer for each is given in brackets. People who are not aware of Bitcoin are assumed to have a

knowledge score of 0. The wording of question 4 changed from wave 2 to wave 3 of the survey; wave 2 wording was as

follows: “Bitcoin is similar to other national currencies, such as the euro or peso, that are backed by the government.”

Wave 1 of the survey did not include knowledge questions. Responses are imputed using respondent results from

wave 2. The imputation procedure allows for non-integer numbers.

Finally, to analyze the data as a pseudo-panel, we generate cohorts, or “types,” based on this

information. We use binary variables to identify type membership, ensuring to have at least 10

observations for each type. To prevent cohorts with small sample sizes, we exclude employment

as a type dimension for individuals with high knowledge scores. The first column of Table 4

provides an overview of the types that we consider in our analysis.

Adoption. We observe the adoption choices of individuals in every wave, and identify period 1

with waves 1 and 2 (2016 respondents), and period 2 with wave 3 (2017-18 respondents). The

BTCOS asks, “Do you currently have or own any Bitcoin?” Respondents can answer “Yes” or

“No.” This question allow us to construct the adoption rates A∗

t in periods one and two for each

demographic type.14 Due to the repeated cross sectional nature of the data, we are unable to match

13As noted in Henry et al. (2018), true or false knowledge questions were not included in wave 1 of the BTCOS.

The pass or fail rate of wave 1 respondents was imputed based on the knowledge score of wave 2 respondents. Mean

value imputation was conducted, matching wave 1 and wave 2 respondents on age, gender, income, employment and

ownership characteristics. Individuals who are not aware of Bitcoin are assumed to “fail” the knowledge questions.
14This question was answered only by those who responded “Yes” to “Have you heard of Bitcoin?” We assume that

individuals who have not heard of Bitcoin do not own Bitcoin.
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an individual’s adoption in period 1 to their adoption in period 2, and vice-versa. Thus, as detailed

earlier, we generate a pseudo-panel by aggregating respondents into types. We then consider a

nonparametric approach and examine the evolution of the average mean across time periods for

each type, assuming that the dimensions used to generate types correctly describe adoption in

period 1 of individuals sampled in period 2.

Many testable implications of the model rely on the curvature of the adoption and belief paths,

which require observations for at least three time periods. As explained earlier, from the data we

observe adoption in periods 1 and 2. We construct an approximation of future adoption and beliefs

using novel information from the BTCOS, wave 3.

To this end, we exploit two key questions from the survey. The first question extracts informa-

tion about individuals’ medium- to long-run beliefs about the survival of Bitcoin. Respondents

are asked: “How likely do you think it is that the Bitcoin system will fail or survive in the next

15 years?” Using a sliding scale, respondents choose from [0,100], with 0 representing “certain

fail” and 100 “certain survival.” From our previous analysis in §2, the answer to this question

is precisely the expected survival chance between periods two and seventeen (i.e., 15 years from

period 2), namely, E[σ2→17|F2], where F2 is all the information available to agents in period 2.

Similarly, the second question asked: “What percentage of Canadians do you predict will be using

Bitcoin 15 years from now?” Individuals use a sliding scale where 0 means “no Canadians will be

using Bitcoin” and 100 means “all Canadians will be using Bitcoin”.15 We assume the answer to

this question corresponds to the expected adoption rate in period 17 conditional on survival, i.e.,

E[A∗

17|survival,Ft]. Since there is no adoption if Bitcoin fails, it follows that,

Â∗

17 ≡ E[A∗

17|F2] = E[A∗

17|survival,F2] · E[σ2→17|F2]. (6)

These approximations allow us to approximate future adoption Â∗

17 using current information.

Beliefs. We construct past, present, and future beliefs ξt. This step is more involved. In what

follows, we set ϕ = 0.2 and φ = 0.3, so that the conditional failure chance (when the technology

is of bad quality) equals Φ(At) = 0.5 whenever there is full adoption (At = 1).

As previously discussed, we observe in the data E[σ2→17|F2], which, by (2), is equal to:

ξ2 + (1− ξ2)E

[

14
∏

j=0

(1− Φ(A∗

2+j))
∣

∣

∣
F2

]

.

We need an approximation for the above bracketed term. To this end, first notice that the belief

process is martingale, i.e., E[ξt+1|Ft] = ξt. Next, because the adoption function A(ξt) is convex

in ξt and the equilibrium adoption obeys A∗

t = A(ξt), the adoption process is a submartingale

15The average response of this question is 33% and above current adoption in Canada (5.8%).
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E[A∗

t+1|Ft] ≥ A∗

t , by Jensen’s inequality; see Theorem 5.2.3 in Durrett (2010). In words, adoption

stochastically increases over time. Using this observation and a generalized version of Holder’s

inequality (Cheung, 2001), Lemma A.1 shows that there exists an affine function Γ(·) such that:

E

[

14
∏

j=0

(1− Φ(A∗

2+j))
∣

∣

∣
F2

]

≤

14
∏

j=0

Γ(A∗

2)
1

15 . (7)

Bound (7) allows us to approximate the conditional survival rate of Bitcoin between periods two

and seventeen, which in turn allows us to approximate beliefs at period 2. Specifically, we let

beliefs ξ2 solve E[σ2→15|F2] = ξ2 + (1− ξ2)
∏14

j=0
Γ(A∗

2)
1

15 , and thus:

ξ2 =
E[σ2→15|F2]−

∏14

j=0
Γ(A∗

2)
1

15

1−
∏14

j=0
Γ(A∗

2)
1

15

. (8)

Notice that this method underestimate the actual beliefs agents hold in period 2. Nevertheless,

Appendix A.5 shows that if the approximated belief path is concave, then the actual belief path

must be concave too. That is, when learning is advanced for the approximated path, then it is

also advanced for actual belief path. Thus, working with approximated beliefs does not affect our

results qualitatively, provided learning is at an advanced stage, which is what we empirically found.

Next, we recover beliefs in period one ξ1 using adoption in period one and formula (1) inversely:

ξ1 =
ξ2(1− Φ(A1))

1− ξ2Φ(A1)
. (9)

Finally, we approximate future beliefs in period 17. For this, we use again the fact that beliefs are

stochastically constant over time, i.e, E[ξt+1|Ft] = ξt. Thus, from Bayes’ rule (1), we can derive

beliefs in the next period ξ3 using current beliefs ξ2 and adoption A2. So assuming Bitcoin will

survive one more period (i.e, over 2018), we have an estimate ξ̂17 ≡ E[ξ17|F3] = ξ3, where:

ξ3 =
ξ2

ξ2 + (1− ξ2)(1− Φ(A2))
. (10)

All told, the data allow us to construct beliefs (ξ1, ξ2, ξ̂17) and adoption rates (A∗

1, A
∗

2, Â
∗

17). We

use this constructed data to examine the stage of adoption and learning in the population. It is

important to observe that we are not imposing a positive relationship between At and ξt in the

construction of these variables.16

16Indeed, from equation (9), one may think that — holding beliefs ξ2 constant — adoption A1 and beliefs ξ1 should

be negatively related. This reasoning is misleading, since adoption A1 is correlated with beliefs ξ2 by Bayes’ rule (1).
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Table 4: Types, Adoption, Beliefs, and Convexity Tests

Wave 1 and 2 Wave 3 Convexity test

Type N A∗

1 N A∗

2 Â∗

17 ξ1 ξ2 ξ̂17 A ξ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

YMULF 53 0.00 61 0.04 0.13 0.31 0.36 0.42 -0.03 -0.04

YMUHF 33 0.00 41 0.04 0.24 0.49 0.54 0.60 -0.02 -0.05

YMELF 261 0.05 170 0.12 0.19 0.40 0.46 0.52 -0.06 -0.05

YMEHF 86 0.03 125 0.07 0.24 0.48 0.54 0.60 -0.03 -0.05

YMLP 23 0.30 139 0.35 0.28 0.45 0.53 0.62 [-0.05] -0.07

YMHP 23 0.54 64 0.18 0.28 0.47 0.58 0.65 [0.34] -0.10

YFULF 124 0.02 119 0.03 0.18 0.37 0.43 0.49 -0.01 -0.05

YFUHF 38 0.08 75 0.00 0.23 0.46 0.53 0.58 0.09 -0.06

YFELF 247 0.01 234 0.02 0.19 0.40 0.45 0.51 0.00 -0.05

YFEHF 91 0.06 214 0.03 0.22 0.43 0.49 0.55 [0.04] -0.05

YFLP 18 0.11 54 0.19 0.26 0.45 0.52 0.59 -0.07 -0.06

YFHP 13 0.21 42 0.08 0.30 0.53 0.61 0.67 [0.14] -0.07

OMULF 195 0.01 194 0.00 0.09 0.29 0.34 0.39 [0.01] -0.04

OMUHF 54 0.03 93 0.00 0.14 0.38 0.43 0.49 [0.04] -0.05

OMELF 146 0.00 139 0.01 0.11 0.31 0.36 0.41 0.00 -0.04

OMEHF 41 0.00 66 0.00 0.16 0.37 0.42 0.48 0.01 -0.05

OMLP 19 0.06 85 0.08 0.14 0.36 0.42 0.48 -0.01 -0.05

OFULF 233 0.00 245 0.00 0.13 0.32 0.37 0.43 0.01 -0.04

OFUHF 60 0.00 106 0.00 0.20 0.41 0.47 0.52 0.01 -0.05

OFELF 165 0.00 159 0.03 0.16 0.37 0.42 0.48 -0.02 -0.05

OFEHF 51 0.00 101 0.00 0.17 0.37 0.42 0.48 0.01 -0.05

OFLP 11 0.00 43 0.03 0.13 0.35 0.40 0.46 -0.03 -0.05

OHP 12 0.06 63 0.02 0.20 0.46 0.52 0.58 [0.05] -0.05

Overall 1,970 0.029 2,545 0.054 0.184 0.394 0.451 0.512 −0.015 −0.050

S.E. (−0.016, −0.013) (−0.051, −0.049)

Notes: Weighted results are based on post-stratification by region, age, and gender in 2016. Type represents the differ-

ent cohorts generated. The characteristics of the cohort can be identified by the five letter code, as follows: Y represents

respondents who are less than 48 years old, O otherwise; M represents male, F otherwise; E represents employed, U

otherwise; H represents high propensity to adopt Bitcoin, L otherwise; and P represents correctly answered at least

three out of five knowledge questions, F otherwise. Additional information on the construction of the propensity to

adopt and the knowledge variable can be found in Tables 3 and 4, respectively. Columns denoting the adoption rate

(A∗
t ) show the proportion of each cohort that adopts Bitcoin in period t, and also the approximated future adoption

rate for each cohort, Â∗
17. ξt represents the mean beliefs held by each type for period t. The convexity test shows

whether the paths of adoption (A) or beliefs (ξ) are concave (negative test) or convex (positive test). Parenthesized

terms in column (9) represents cohorts for whom adoption is non-monotone, invalidating the convexity test.
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Figure 3: Adoption and Beliefs. For all time periods considered (past, present, and future), adoption and beliefs

about Bitcoin technology are positively related. Since beliefs ξt increase over time, the realizations of ξt are high

when t is high. The correlation is 0.50 between A∗
1 and ξ1, 0.48 between A∗

2 and ξ2, and 0.97 between Â17 and ξ̂17.

The latter correlation is high by construction, see our discussion in §4-A.

4 Testing the Model Predictions

A. Adoption and Beliefs. The model predicts that agents adopt more when the survival rate of

Bitcoin rises. Since the Bitcoin survival rate rises as beliefs that the technology is good rises, we

should observe that adoption A∗

t positively relates to beliefs ξt in any time period t. As seen in

Figure 3, adoption and beliefs are positively correlated. The right panel of Figure 3 shows a very

close relationship between future adoption and future beliefs. This is indeed owed to the construc-

tion of the variables. For to construct Â∗

17 and ξ̂17 we use the expected survival rate and beliefs ξ2,

respectively (see equations (6) and (10)). But, as seen in equation (9), we use the expected survival

rate to construct ξ2. This explains why Â∗

17 and ξ̂17 are almost perfectly correlated. Hence, we use

only the left and middle panels of Figure 3 to validate the model.

B-C. Adoption and the Speed of Adoption. The model also predicts that adoption should be

increasing over time. The reason is that a longer survival of Bitcoin provides a stronger signal that

its quality is good, reinforcing adoption and therefore future beliefs. From Table 4 we see that, at

the aggregate level, adoption increases over time. Adoption is A∗

1 = 2.9% in period 1 (year 2016),

is A∗

2 = 5.4% in period 2 (year 2017), and is expected to be Â∗

17 = 18.4% in period 17 (year

2032). On average, individuals forecast more Bitcoin adoption for the next 15 years. Also, as seen

in Figure 4, at the type level, the adoption path is increasing for 15 out of 23 demographic types.

Thus, the data appears to be consistent with the model in the majority of the cases.

Next, to verify whether the speed of adoption is currently increasing, we drop demographic types

for which adoption is not increasing in time (8 out of 23). We consider the following convexity

test. This test consists in taking the weight ζ = 15/16 so that the second period can be written as

a convex combination between periods 1 and 17, namely, 2 = ζ + (1 − ζ)17. Then, we explore

whether the convex combination of adoption rates between the first and last periods is greater or

less than the adoption rate in the second period. Because a convex function always lie below the
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Figure 4: The Adoption Path. For most types, adoption rises in time. Within those types for which adoption is

monotone, the speed of adoption is currently increasing (at t = 2) for some types, but is decreasing for others.

line segment between any two points, the speed of adoption is increasing in period 2 if and only if

the difference ζA∗

1 + (1− ζ)Â∗

17 −A∗

2 ≥ 0. Finally, as previously argued, since the model predicts

that adoption is initially and eventually convex and concave in time (S-shaped path), respectively,

the convexity test allows us to uncover how early or advanced Bitcoin experimentation is.

Column (9) of Table 4 shows the result of this convexity test. We observe that, for 6 out of

15 types, the speed of adoption is increasing (the difference is positive). However, for 9 out 15,

the speed of adoption is decreasing (the difference is negative). Further exploration of Table 4

reveals that the speed of adoption is increasing and decreasing mainly for old and young adults,

respectively. This is consistent with commonly held view that young people are usually more

inclined to experiment with new technologies than older ones, and thus young people reach the

saturation phase earlier. Altogether, Bitcoin experimentation is not globally in its advanced phase,

even though more than 10 years have elapsed since its market introduction.

D. The Speed of Learning. Because of Bayes’ rule (1) and since adoption reinforces learning,

the path of beliefs ξt is increasing in time, as seen in Figure 5. According to Table 4, at the

aggregate level, current beliefs ξ2 are around 0.45. That is, individuals put slightly more weight

on the event that Bitcoin is a bad technology and that it will eventually collapse. But, should we
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Figure 5: The Belief Path. For all types, the speed of learning is currently decreasing (at t = 2) (concave portion

of the belief S-curve).

expect these beliefs to rapidly improve over time? Also, is individuals’ learning “saturated”?

For this goal, we use our estimates of beliefs and adapt our previously used convexity test. Be-

cause the belief path is S-shaped, this exercise would shed light on whether the speed of learning

is increasing or decreasing, and thereby how advanced learning is in the population. As before,

consider the weight ζ = 15/16. The speed of learning is currently decreasing if and only if the

difference ζξ∗1 + (1− ζ)ξ̂∗17 − ξ∗2 ≤ 0. As argued in §A.5, if the speed of learning is decreasing for

the approximated path (ξ∗1 , ξ
∗

2, ξ̂
∗

17), then it is also decreasing for the actual unobserved path.

Column (10) of Table 4 shows that for all types the convexity test is negative — namely, Bitcoin

learning is globally advanced. This means that, conditional on the survival of Bitcoin, individual

beliefs about the quality of Bitcoin should have small variations over time. Comparing this finding

with that of adoption, see that the inflection point of beliefs unambiguously precedes that of adop-

tion for those demographic types for which the speed of adoption is increasing, and so for those

types we should expect greater increases in adoption relative to beliefs in the short-run.
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Table 5: The Effects of Adoption Costs

Type A∗

1 A∗

2 Â∗

17 ξ1 ξ2 ξ̂17

YFELF 0.01 0.02 0.2 0.4 0.45 0.51

OFELH 0 0.03 0.16 0.37 0.42 0.48

Difference 0.01 -0.01 0.04 0.03 0.03 0.03

S.E. (0.00,0.03) (-0.06,0.05) (-0.03,0.10) (-0.06,0.11) (-0.06,0.12) (-0.06,0.13)

YFULF 0.02 0.03 0.18 0.37 0.43 0.49

OFULF 0 0 0.13 0.33 0.38 0.43

Difference 0.02 0.03 0.05 0.04 0.05 0.06

S.E. (0.00,0.04) (0.00,0.07) (-0.01,0.12) (-0.04,0.14) (-0.04,0.15) (-0.04,0.16)

YMEHF 0.03 0.07 0.24 0.48 0.54 0.6

OMEHF 0 0 0.15 0.36 0.42 0.47

Difference 0.03 0.07 0.09 0.12 0.12 0.13

S.E. (0.00,0.05) (0.02,0.12) (0.00,0.15) (0.01,0.21) (0.01,0.22) (0.01,0.23)

YMELF 0.04 0.12 0.19 0.4 0.46 0.52

OMELF 0 0.01 0.11 0.31 0.36 0.41

Difference 0.04 0.11 0.08 0.09 0.1 0.11

S.E. (0.02,0.08) (0.04,0.17) (0.01,0.14) (0.01,0.18) (0.01,0.19) (0.01,0.22)

YMULF 0 0.04 0.12 0.31 0.36 0.41

OMULF 0.01 0 0.1 0.29 0.34 0.39

Difference -0.01 0.04 0.02 0.02 0.02 0.02

S.E. (-0.03,0.00) (0.00,0.11) (-0.03,0.10) (-0.07,0.12) (-0.08,0.13) (-0.08,0.15)

YFLP 0.11 0.17 0.26 0.45 0.51 0.58

OFLP 0 0.03 0.13 0.35 0.4 0.46

Difference 0.11 0.14 0.13 0.1 0.11 0.12

S.E. (0.00,0.26) (0.00,0.29) (0.03,0.24) (-0.02,0.23) (-0.02,0.26) (-0.02,0.29)

Note: Type represents the different cohorts generated. The characteristics of the cohort can be identified by the 5

letter code, as follows: Y represents respondents who are less than 48 years old, O otherwise; M represents male,

F otherwise; E represents employed, U otherwise; H represents high propensity to adopt Bitcoin, L otherwise; P

represents correctly answered at least three out of five knowledge questions, F otherwise. This table excludes all

demographic types for which the adoption path is not increasing in time. It then compares the effect of age, or

adoption costs, on adoption rates and beliefs in every period, fixing all other type characteristics.

E. Changing Adoption Costs. Another model prediction is that when adoption costs fall, adop-

tion and beliefs increase in all periods. To test this prediction, we compare demographic types for

which the only dimension that differs is age. Why age? Intuitively, older people are less inclined to

innovate or learn how to use new technologies. They may find it too involved to set-up an account,

learn how to use it, etc. Indeed, evidence from the Method of Payments surveys indicates that older

people are on average more likely to stick to more conventional payment methods (Henry et al.,
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2015). This suggests that it is reasonable to conjecture that older individuals incur a higher cost of

adopting a new payment method. Henceforth, we associate older individuals as incurring a higher

average adoption cost. Notice that this exercise is formally equivalent to changing the average

adoption cost c̄/2, which affects the equilibrium determination via (4).

To compare adoption rates and beliefs across types, we exclude demographic types for which the

adoption path is not monotone. This leaves us with five comparisons to perform, in which people

are identical but differ in age only. Table 5 shows the adoption rates and beliefs for each relevant

type. We notice that, for all cases but one, the data seems to be consistent with the theory —

namely, adoption and beliefs increase as age decreases.

5 Concluding Remarks

Motivated by an empirical observation that Bitcoin adopters are more optimisitic about the sur-

vival of Bitcoin than non-adopters, this paper develops a simple model of Bitcoin/technology adop-

tion with endogenous learning. The model delivers several testable predictions that we take to the

data. We use the BTCOS survey, which contains information on Bitcoin usage and perceptions in

Canada. We find pieces of evidence supporting the model. First, adoption increases as individuals

become more optimistic about Bitcoin. Second, adoption rates increase over time for most demo-

graphic sectors. Third, individuals with lower adoption costs have higher adoption rates and are

more optimistic about Bitcoin technology. Finally, using the data and structure of the model, we

find that the speed of learning is globally decreasing in Canada; however, the speed of adoption is

not. In other words, for some demographic segments (e.g., older people) the speed of adoption is

increasing while that of learning is decreasing. This indicates that learning saturates earlier than

adoption, which is consistent with the theoretical model.

As for future work, a structural estimation of the model parameters seems interesting, as this

would allow us to reconstruct the paths of adoption and beliefs and perform counterfactual analysis.

A Appendix

A.1 The Adoption Function is Increasing and Convex

We differentiate (5) to see that:

A′(ξ) =
c̄ϕ+ φ

[c̄+ φ(1− ξ)]2
> 0 and A′′(ξ) =

2φ(c̄ϕ+ φ)

[c̄+ φ(1− ξ)]3
> 0.

As a result, adoption increases at increasing rates as individuals become more optimistic.
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A.2 The Belief and Adoption Paths are S-shaped

I. BELIEFS. We now show that the belief path is S-shaped. To this end, consider two periods,

namely, t and t+ dt. Then, applying Bayes’ rule (1), given At, yields a posterior belief:

ξt+dt =
ξt

ξt + (1− ξt)(1− Φ(At)dt)
=

ξt
1− (1− ξt)Φ(At)dt

.

Subtracting ξt and dividing both sides by dt we obtain:

ξt+dt − ξt
dt

=
ξt(1− ξt)Φ(At)

1− (1− ξt)Φ(At)dt
.

Taking dt → 0 yields the following law of motion, ξ̇t = ξt(1 − ξt)(ϕ + φAt). Next, use that, in

equilibrium, At = A(ξt), given (5), to get the equilibrium evolution of beliefs:

ξ̇t = ξt(1− ξt)(ϕ+ φA(ξt)) = ξt(1− ξt)

(

c̄ϕ+ φ

c̄+ (1− ξt)φ

)

.

As discussed in the main text, ξ̇t > 0 as agents become more optimistic about the technology as

time goes by, conditional on observing no failures. Now, define h : [0, 1] 7→ R as follows,

h(ξ) ≡ ξ(1− ξ)

(

c̄ϕ+ φ

c̄+ (1− ξ)φ

)

.

By the Mean Value theorem, there exists ξ̂ ∈ (0, 1) such that h′(ξ̂) = 0, because h(0) = h(1) = 0.

Moreover, h(·) is strictly concave17 and thus ξ̂ is unique.

Finally, we argue that ξ̇t is single peaked. Indeed, ξ̈t = h′(ξt)ξ̇t, and so ξ̈t = 0 if and only if

h′(ξt) = 0 (as ξ̇t > 0). But, h′(·) vanishes only when beliefs ξt = ξ̂. Because ξ̇t > 0, there exists

a unique time t̂ > 0 for which ξt̂ = ξ̂. That is, ξ̈t vanishes uniquely at time t = t̂. Also, for t ≶ t̃,

we have ξt ≶ ξ̂, and so ξ̈t = h′(ξt)ξ̇t ≷ 0. Altogether, ξ̇t is single peaked or ξt is S-shaped. �

II. ADOPTION. We now show that the adoption path is also S-shaped. First, notice that adoption

evolves according to, Ȧt = A′(ξt)ξ̇t = A′(ξt)h(ξt) ≡ g(ξt) where g : [0, 1] 7→ R obeys:

g(ξ) =
(1− ξ)ξ(φ+ c̄ϕ)2

(c̄+ φ(1− ξ))3
.

Following our previous logic, because g(0) = g(1) = 0 there exists ξ̃ ∈ (0, 1) such that g′(ξ̃) = 0.

17Indeed, after some algebra, we see that h′′(ξ) = − 2c̄(φ+c̄)(φ+c̄ϕ)
(c̄+φ(1−ξ))3 < 0.
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Moreover, simple algebra allows us to determine that ξ̃ is unique. Indeed,

g′(ξ) =
(φ+ c̄ϕ)2 (c(1− 2ξ) + φ (1− ξ2))

(c̄+ φ(1− ξ))4
.

Thus, g′(ξ) = 0 if and only if c(1− 2ξ) + φ(1− ξ2) = 0. But, this equation has a unique solution

on [0, 1]. Such solution is given by ξ̃ = (−c+
√

φ2 + c̄2 + c̄φ)/φ. Finally, it is straightforward to

see that g′(0) > 0 > g′(1), and so g′(ξ) must cross the horizontal axis from above, as ξ̃ is unique.

Altogether, we conclude that g(·) is hump-shaped.

We now argue that At is S-shaped. To this end, we show that Ȧt is single-peaked. First, notice

that Ät = g′(ξt)ξ̇t. Thus, since ξ̇t > 0, we have that Ät = 0 if and only if g′(ξt) = 0. But

g′(ξt) = 0 when ξt = ξ̃, which happens uniquely at time t = t̃ > 0 obeying ξt̃ = ξ̃. In other words,

Ät vanishes only once at time t = t̃. For time t ≶ t̃, we have ξt ≶ ξ̃, and so Ät = g′(ξt)ξ̇t ≷ 0. All

in all, this shows that Ȧt is single peaked or At is S-shaped in time t. �

A.3 Learning Saturates Earlier than Adoption

We now show that the inflection point of the belief path t 7→ ξt precedes that of the adoption path

t 7→ At. To this end, we examine the adoption path. By §A.2-II, the adoption path is described by

Ȧt = A′(ξt)ξ̇t. Differentiating both sides with respect to time t, yields:

Ät = A′′(ξt)ξ̇
2
t +A′(ξt)ξ̈t.

Now, notice that when the belief path reaches its inflection point, i.e., ξ̈t = 0, adoption obeys

Ät = A′′(ξt)ξ̇
2
t > 0 as ξ̇t > 0 and A′′ > 0 by §A.1. In other words, when learning saturates

(ξ̈t = 0), adoption is still in its initial phase wherein Ät > 0. �

A.4 Approximating the Survival Rate

Lemma A.1. The conditional Bitcoin survival rate from period 2 to 17, forecasted using cur-

rent available information, obeys E
[

∏14

j=0
(1− Φ(A2+j))

∣

∣

∣
F2

]

≤
∏14

j=0
Γ(A2)

1

15 , for some affine

function Γ.

Proof: Consider positive numbers (pj)
14
j=0 such that

∑14

j=0
1/pj = 1. Then, using a generalized

version of Holder’s Inequality (Theorem 2.1 in Cheung (2001)) we have:

E

[

14
∏

j=0

(1− Φ(A2+j))
∣

∣

∣
F2

]

≤
14
∏

j=0

E

[

(1− Φ(A2+j))
pj

∣

∣

∣
F2

]
1

pj (11)
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Now, for each pj > 1, consider the auxiliary function Υpj(A) ≡ [1−Φ(A)]pj and a linear approx-

imation around some Ā so that Υpj(A) = Υpj(Ā) +Υ′

pj
(Ā)(A− Ā) with Υ′

pj
< 0. Thus, the right

expression in (11) is equal to:

14
∏

j=0

E

[

Υpj(A2+j)
∣

∣

∣
F2

]
1

pj =
14
∏

j=0

[

Υpj(Ā) + Υ′

pj
(Ā)(E(A2+j | F2)− Ā)

]
1

pj

≤

14
∏

j=0

[

Υpj(Ā) + Υ′

pj
(Ā)(A2 − Ā)

]
1

pj .

The equality follows from the fact that the expectation is a linear operator, whereas the inequality

follows from the Law of Iterated Expectations and the fact that (At)t is a submartingale, and thus

E[At+j |Ft] ≥ At for all j > 0. �

Remark. Notice that the previous bound holds for any strictly positive vector (pj)j . For the

computational part, for simplicity, we take pj = 15 for all j. We also take Ā as the adoption rate

in period 2 across all demographic types, namely, Ā = 0.054 by Table 4.

A.5 The Actual Belief Process is Currently Concave

In this section, we show that if the approximated path of beliefs is concave, then the original path

of beliefs is also concave. First, for any beliefs ξ2 and adoption rates A1, A2, we can compute past

beliefs ξ1 and future beliefs ξ̂17, using equations (9) and (10), respectively. By the convexity test,

given ζ = 15/16, the belief path (ξ1, ξ2, ξ̂17) is concave if and only if:

ζξ1 + (1− ζ)ξ̂17 − ξ2 = ζ
ξ2(1− Φ1)

1− ξ2Φ1

+ (1− ζ)
ξ2

1− (1− ξ2)Φ2

− ξ2 ≤ 0, (12)

where Φ1 ≡ Φ(A1) and Φ2 ≡ Φ(A2). As seen in Table 4, for all demographic types, the belief

path is concave, i.e., the above inequality holds when ξ2 = ξ∗2 , where ξ∗2 is given by equation (8).

Now, define the actual belief path as the one induced by the unobserved beliefs, say, ξ̃2. We’ll

show that if inequality (12) obtains for ξ2 = ξ∗2 , then it also obtains for ξ2 = ξ̃2. Consider (12)

and divide it by ξ2 and multiply it by 1 − ξ2Φ1 > 0 and 1 − (1 − ξ2)Φ2 > 0 to get an equivalent

inequality H(ξ2) ≤ 0, where H : [0, 1] 7→ R obeys

H(ξ2) ≡ ζ(1− Φ1)(1− (1− ξ2)Φ2) + (1− ζ)(1− ξ2Φ1)− (1− (1− ξ2)Φ2)(1− ξ2Φ1) ≤ 0.

Doing some algebra allows us to simplify H(ξ2) and obtain:

H(ξ2) = −ζΦ1 + (1− ξ2)(1− ζ(1− Φ1)) + ξ2Φ1(ζ − (1− ξ2)Φ2).
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It is easy to see that H is a quadratic and strictly convex function, H ′′ < 0. Also, H is initially

positive and decreasing, H(0) > 0 > H ′(0), and vanishes at ξ = 1, H(1) = 0. From the

data (Table 4), we know that H(ξ∗2) < 0, which implies that (by continuity of H) there exists

ξ
2
∈ (0, ξ∗2) such that H(ξ

2
) = 0. Thus, the two roots of H where it vanishes are ξ2 = ξ

2
and

ξ2 = 1. Thus, H(ξ2) ≤ 0 for ξ2 ∈ [ξ
2
, 1], as H is quadratic and strictly convex.

Finally, from inequality (7), it is easy to see that the approximated beliefs ξ∗2 is an underestimate

of ξ̃2 — namely, ξ̃2 ≥ ξ∗2 . Thus, if H(ξ∗2) < 0, then we must have that H(ξ̃2) < 0. This implies

that the actual belief path (induced by ξ2 = ξ̃2) is concave too. �
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