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Abstract

This paper develops a model of decentralized law enforcement to study the joint

determination of enforcement intensity, criminal participation, and offense severity.

A key feature of the model is that the probability of detection depends not only on

enforcement effort but also on crime severity, reflecting institutional considerations

such as citizen reporting and discretionary policing. This approach generates rich

feedback effects that jointly determine equilibrium crime rates, arrest rates, enforce-

ment levels, and offense severity. I use the model to evaluate the impact of several

policy interventions—including harsher penalties, improved outside options, enhanced

detection technologies, and changes in enforcement compensation. While enforcement

discretion can sometimes blunt the effectiveness of deterrence policies, I identify a key

condition—log-modularity of the detection probability—that ensures these interven-

tions lead to socially desirable outcomes. The model not only helps rationalize recent

empirical findings but also yields new testable predictions about the relationship be-

tween enforcement effort, crime severity, and arrests.
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1 Introduction

Law enforcement in many countries is highly decentralized; for example, in the US, policing

responsibility is spread across local, county, and state agencies (Owens, 2020).1 This de-

centralization is usually combined with police discretion over enforcement practices, which

has been shown to significantly shape enforcement outcomes (Gonçalves and Mello, 2023;

Weisburst, 2024). Moreover, recent evidence indicates that police behavior often aligns more

closely to tangible objectives—such as maximizing arrests or meeting implicit quotas—than

to purely prevent crime (Stashko, 2022; Ossei-Owusu, 2021).2 Consequently, the combi-

nation of decentralized and discretionary enforcement, with arrest-driven incentives may

substantially influence the effectiveness of policies aimed at reducing crime.

In this paper, I develop a model of decentralized law enforcement to explore how different

policy interventions influence both enforcement efforts and criminal behavior. Traditionally,

economic models of crime assume a centralized agency (e.g., a social planner) responsible for

setting penalties and determining the probability of apprehension, while potential criminals

face a binary decision: commit a crime or abstain (Becker, 1968). In contrast, I introduce

a richer framework in which potential offenders decide not only whether to commit a crime

but also the severity of their offense. Indeed, many criminal activities involve clear intensive

margins: burglars choose the size of the loot, speeders decide how fast to drive, counterfeiters

determine how much fake currency to produce, drug dealers select the quantity of drugs to

transport, and even minor infractions such as illegal parking involve meaningful decisions

regarding the extent of the offense. Central to these examples is the idea that offense

severity could influence the likelihood of detection. A more severe offense tends to attract

greater visibility and public attention, is often more difficult to conceal, and generally leaves

behind more extensive evidence trails, thereby facilitating detection by law enforcement.3

The model rests on four main tenets: (i) law enforcement is decentralized; (ii) enforcement

efforts aim at maximizing arrests; (iii) potential criminals strategically select the severity

(“size”) of their offenses; and (iv) the detection of criminals depend jointly on enforcement

1As of 2017, the US had around 22,800 enforcement agencies, including municipal police departments,
sheriff’s departments, county police departments, and state police agencies; see Owens (2020) for more details.

2Intuitively, arrests are easily quantifiable and thus readily integrated into performance evaluations,
whereas crime prevention is inherently difficult to measure. Nevertheless, police agencies might still priori-
tize crime deterrence, depending on the context. For instance, Eeckhout et al. (2010) analyze administrative
records from Belgian police departments, providing evidence that their primary objective in issuing traffic
tickets is to deter speeding, not to maximize revenue (pp. 1116–1117).

3As noted in Quercioli and Smith (2015), in an interview with NPR’s All Things Considered, Kersten
remarks: “One of the things that made him (counterfeiter Art Williams) successful is that he limited his
production. If a counterfeiter goes out there and prints a million dollars, he’s going to get caught right away
because when you flood the market with that much fake currency, the Secret Service is going to be all over
you very quickly.” (Kersten, 2005).
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effort and crime severity. Together, these tenets generate novel feedback effects between

law enforcers and potential offenders, influencing equilibrium outcomes such as enforce-

ment levels, crime severity, crime rates, and arrest rates. I examine the impact of various

policy interventions, including harsher penalties, improved outside options for criminals, en-

hanced detection technologies, and adjustments in police compensation schemes. Although

enforcement efforts typically fall in response to reductions in crime—potentially leading to

unintended consequences—I identify clear sufficient conditions, particularly on the detection

probability, that mitigate these adverse effects and help reconcile recent empirical findings.

Furthermore, the resulting feedback effects can be understood through the familiar lens of

supply-and-demand, augmented by strategic decisions regarding the severity of crimes.

To capture the decentralized and discretionary nature of law enforcement, I consider a

continuum of law enforcers, each electing their costly enforcement effort.4 I assume law en-

forcers are atomless, and thus individually unable to affect the overall crime rate; instead,

each enforcer takes the crime rate as given and chooses their enforcement effort to maximize

arrests. Operationally, I implement this using a random matching model: law enforcers

encounter opportunities to apprehend criminals as a function of the prevailing crime rate.

Arrests then occur probabilistically, reflecting real-world imperfections in detection and ap-

prehension.5 On the other side of the market, there is a continuum of heterogeneous potential

criminals each choosing whether to commit a crime, and, if so, the severity of their offense.

A more severe crime yields a greater reward but faces a higher probability of apprehension

all else equal. In equilibrium, all players simultaneously best respond to one another.

To characterize equilibrium outcomes, I decompose the analysis into two interconnected

components: (i) an induced market governed by supply-and-demand forces, and (ii) the

optimal choice of crime severity. Equilibrium requires that the enforcement level clears the

induced market for crime, while criminals simultaneously select an offense severity that max-

imizes their profits given this market-clearing enforcement level. To illustrate, fix the severity

of offenses: potential criminals’ decisions on whether or not to commit crimes generate a

downward-sloping supply curve, since lower enforcement induces more individuals to engage

in crime. Conversely, law enforcers’ decisions create an upward-sloping “demand” curve, as

a higher crime rate elicits more enforcement effort. The intersection of these curves defines

the market clearing locus, mapping each offense severity to its corresponding market-clearing

4Recent estimates suggest that the US spends approximately $150 billion annually on police protection,
a figure that has risen by about 21% over the past decade (Anderson, 2021).

5Many crimes go unreported to law enforcement agencies. According to the Bureau of Justice Statistics,
approximately 30% of property crime victimizations were reported to police in 2023; see https://bjs.ojp.
gov/library/publications/criminal-victimization-2023. Additionally, not all reported crimes result
in arrests. In 2023, 41.1% of reported violent crimes and 13.9% of reported property crimes were cleared by
arrest or exceptional means; see https://cde.ucr.cjis.gov/LATEST/webapp/#/pages/home.
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enforcement level. Under the assumption that the detection probability is supermodular in

enforcement effort and offense severity, this locus slopes upward. Considering the criminals’

optimal severity choice separately, this one decreases with higher enforcement. Thus, equilib-

rium is determined by the intersection of two loci: an upward-sloping market clearing locus

and a downward-sloping severity locus. This intersection characterizes a unique equilibrium,

yielding a rich yet tractable framework suitable for comparative statics (Proposition 1).

In Proposition 2, I analyze the effects of imposing harsher punishments. Stricter penal-

ties deter more potential criminals, and those who remain undeterred commit less severe

offenses. Thus, because enforcement is costly, this leads to an unambiguous decrease in

equilibrium enforcement level. However, the overall impact on crime severity, the crime rate,

and the arrest rate remain ambiguous. A key contribution is identifying conditions on the

detection probability that ensure desirable policy outcomes. Proposition 2 establishes that

such favorable results emerge when the detection probability ℘(e, σ) is log-modular in en-

forcement effort e and crime severity σ. For instance, any Cobb-Douglas function, such as

℘(e, σ) = eaσb with a, b ∈ R, satisfies this property. Under this condition, harsher punish-

ments reduce enforcement levels but still lead to fewer arrests, lower offense severity, and a

lower crime rate. Importantly, this log-modularity condition is not merely a technical arti-

fact but reflects a practical institutional mechanism: citizens report offenses as a function of

crime severity, and conditional on such reports, police exert effort to apprehend offenders.

The landmark paper by Becker (1968) predicts that better employment opportunities—or

improved outside options—should reduce overall crime. However, it is less clear how changes

in outside options affect the severity of offenses committed by those who remain criminally

active. Proposition 3 shows that while improved outside options effectively discourages

crime participation, they also lead to lower enforcement effort, which in turn increases offense

severity. The intuition is that as crime falls, enforcers reduce their effort, raising the marginal

returns to more severe offenses. As a result, fewer individuals commit crimes, but those who

do engage in more severe offenses. This insight helps reconcile recent empirical findings

showing that negative income shocks can affect not just the likelihood of offending, but also

the intensity of criminal behavior (e.g., Bignon et al., 2015; Giulietti and McConnell, 2024).

Recent empirical studies indicate that the probability of detection is influenced by en-

vironmental or technological factors (e.g., Vollaard, 2017; Anker et al., 2021), generally

supporting the view that an increased probability of detection reduces crime. However, the-

oretical implications are more nuanced, as detection probabilities simultaneously affect both

sides of the market—law enforcers and potential criminals—leading to ambiguous effects on

equilibrium outcomes. Proposition 4 provides conditions that resolve this ambiguity, helping

to reconcile empirical findings while offering new testable implications. Specifically, if the
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detection probability is, again, log-modular in enforcement and offense severity, then a pro-

portional increase in detection probability leads to desirable outcomes: fewer crimes, reduced

severity of offenses, and fewer arrests—all achieved without requiring higher enforcement.

The final policy exercise examines the effects of strengthening the incentives for law

enforcers to apprehend criminals. Specifically, what occurs when law enforcers are more

strongly rewarded for arrests? Such a change indirectly influences potential criminals through

adjustments in enforcement effort. Naturally, a greater reward for arresting criminals encour-

ages increased enforcement, deterring criminal entry and reducing the severity of committed

offenses. However, the overall effect on arrests is more subtle because the rise in enforcement

is accompanied by a decrease in criminal activity. Proposition 5 shows that, under mild con-

ditions, the equilibrium arrest rate actually declines. This finding implies that using arrest

data as a proxy for enforcement intensity should be approached with caution.

Finally, I explore several extensions and robustness checks. First, I consider a centralized

enforcement setting in which enforcement effort directly impacts the crime rate. I find that

centralization—coupled with arrest-driven incentives—produce undesirable outcomes: crime

rates and offense severity both increase, while equilibrium enforcement declines (Proposi-

tion 6). Second, I extend the results to settings where the penalty for offenses explicitly

depends on their severity. Lastly, I show that while the baseline model assumes supermod-

ularity of the detection probability ℘(e, σ), relaxing this to allow for submodularity can be

easily accommodated; moreover, such extension could help explain how punishment and en-

forcement could act as complements, as suggested in recent empirical work (Soliman, 2022).

The rest of the paper proceeds as follows. Section §2 reviews the related literature.

Section §3 introduces the baseline model, and Section §4 characterizes equilibrium outcomes.

Section §5 provides a fully solved example, and Section §6 explores policy interventions.

Section §7 examines extensions and variations to the baseline model. Finally, Section §8
concludes. Omitted proofs are provided in the Appendix.

2 Related literature

This paper relates to the literature on illegal behavior and public enforcement of laws, pio-

neered by Becker (1968) and surveyed by Garoupa (1997) and Polinsky and Shavell (2000).6

This research line typically studies the decision problem of a central authority that jointly

chooses the probability of detection and the legal penalty to optimize social welfare, account-

ing for criminals’ optimal responses. My paper differs in several important ways. First, it

6For a clear and concise overview of Becker’s approach to crime and deterrence, along with a comprehen-
sive survey of the empirical literature it inspired, see Chalfin and McCrary (2017).
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separates the choice of enforcement from the choice of punishment, reflecting that in practice

law enforcers typically take penalties as given and independently select their enforcement

intensity. Second, following Di Porto et al. (2013), I adopt a decentralized approach with

many enforcers making individual decisions rather than a single centralized authority.7,8

By allowing offenders to make marginal decisions regarding crime severity, my paper also

connects to the literature on marginal deterrence (Stigler, 1970; Shavell, 1992; Mookherjee

and Png, 1994) which primarily focuses on sanction design. My analysis examines a critical

yet often overlooked trade-off: crime severity directly influences the detection probability.9

This generates rich feedback mechanisms, determining crime rates, arrest rates, enforcement

intensity, and crime severity as equilibrium outcomes.

Relatedly, a smaller literature explores interactions between enforcers and criminals where

offenders invest in costly detection avoidance (e.g., Malik, 1990; Friehe and Miceli, 2017).

In this literature, the detection probability depends on both enforcement and avoidance

efforts, providing an argument against maximal penalties since higher fines naturally induce

greater avoidance efforts by criminals. In contrast, my paper examines a broader set of policy

interventions aimed at reducing crime and identifies sufficient conditions on the detection

probability function that yield desirable policy outcomes.

Finally, there is a growing literature leveraging random matching models where individ-

uals take costly actions to prevent harm (e.g., Quercioli and Smith, 2015; Vásquez, 2022;

Cisternas and Vásquez, 2022). These models generate induced supply-and-demand frame-

works useful for analyzing policy interventions. However, the combination of heterogeneous

potential criminals making both extensive (whether to commit a crime) and intensive (sever-

ity of crime) decisions, alongside multiple enforcers independently choosing enforcement in-

tensity, implies that equilibrium cannot be fully characterized with a supply-and-demand

approach. Instead, the supply-and-demand framework only partially determines equilibrium

outcomes, with optimal crime severity decisions providing the complementary piece needed

for a complete equilibrium characterization.

7Di Porto et al. (2013) develops a tax evasion where firms report their private income to auditors, taking
into account audit probabilities and penalties. They note, “[. . . ] enforcement is not actually carried out
by a unitary actor, but by a multitude of individual ‘auditors’ (police officers, tax inspectors, etc.) whose
individual behavior has negligible impact but whose aggregate behavior generates deterrence” (p. 35).

8Assuming centralized enforcement, a related literature focuses on the design of policing strategies. Eeck-
hout et al. (2010) show how random, publicly announced crackdowns can arise optimally from police in-
centives. More recently, Gao and Vásquez (2024) studies optimal allocations of police resources across
heterogeneous crime targets when criminal can engage in sequential search.

9The conventional view suggests that if penalties are independent of severity, criminals lack incentives
to reduce crime intensity (Stigler, 1970). However, if crime severity affects the detection probability, then
criminals may have incentives to scale back their intensity even without severity-dependent penalties.
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3 The Model

Players. There is a unit mass of law enforcers, and a large mass of potential crimi-

nals. Potential criminals differ in their outside option ω ∈ [0, w̄], with w̄ ∈ R+ (extended

positive reals), which represents, e.g., legal earning opportunities. Outside options are

distributed according to an atomless cumulative distribution function G(ω) with density

g(ω) ≡ dG(ω)/dω > 0 on (0, w̄). When ω’s support is bounded, i.e., w̄ < ∞, it is assumed

that w̄ is high enough (to be made precise shortly) so that there is always a non-negligible

mass of potential criminals unwilling to engage in crime.

Actions and Capture. Potential criminal chooses whether to commit a crime and, if

so, they also elect the severity σ ∈ [0, 1] of their offense. Henceforth, potential criminals

who choose to engage in crime are referred to simply as criminals. On the other hand, law

enforcers choose a costly enforcement level e ∈ [0, 1] to capture criminals (e.g., policing or

patrolling). However, capturing a criminal requires first encountering one. This is modeled

with a random matching technology: law enforcers randomly encounter criminals at rate

κ ≥ 0, referred to as the the crime rate, which is determined endogenously by the mass of

potential criminals who choose to engage in crime. The arrest rate α ∈ [0, 1] denotes the

mass of criminals who are successfully apprehended. Intuitively, each law enforcer is matched

with a “criminal case” at rate κ and successfully “clears” the case at rate α. The detection

technology—i.e., the probability of apprehension conditional on a match—is described next.

As in Becker (1968), a potential criminal who commits a crime may not be caught. I

assume the enforcement level e and crime severity σ fix the capture chance ℘(e, σ), where

℘ : [0, 1]2 → [0, 1] is a twice continuously differentiable function. Thus, the arrest rate is

simply α = κ × ℘. I assume that more policing yields a strictly higher detection chance,

i.e., ℘e(e, σ) > 0 for e, σ > 0.10 Next, to capture that high severity crimes are less likely to

avoid capture, I assume that the capture chance ℘ strictly rises in the severity of the offense:

℘σ(e, σ) > 0 for e, σ > 0. Finally, to ensure well-behaved optimization problems for law

enforcers and potential criminals, respectively, I assume that ℘ is concave in policing e (i.e.,

℘ee ≤ 0) but convex in severity σ (i.e, ℘σσ ≥ 0).

Since law enforcers and potential criminals make decisions at the margin, it is necessary

to impose further restrictions on the capture chance ℘(e, σ). The baseline case assumes that

the marginal efficacy of enforcement is greater for high severity crimes. In other words,

the capture chance ℘(e, σ) is supermodular in (e, σ), or ℘eσ ≥ 0.11 This assumption disci-

10For any differentiable real valued function x 7→ h on Rn, I define hxi
(x) ≡ ∂h(x)/∂xi.

11A real valued function x 7→ h on a lattice X ⊆ Rn is supermodular (submodular) if h(max{x, x′}) +
h(min{x, x′}) ≥ (≤)h(x) + h(x′). When h is twice differentiable, then h is supermodular (submodular) iff
hxixj (x) ≥ (≤)0 for all i ̸= j, by Topkis (1978). These definitions are strict if the inequalities are strict.
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plines the non-trivial feedback effects between enforcers and criminals, while ensuring the

equilibrium—outlined at the end of this section—is unique. Section §7.3 examines the sub-

modular case, showing that the essence of the framework remains unchanged.

Payoffs. I begin with the behavior of potential criminals. An offense of severity σ yields

a net reward r(σ) to the criminal, where r : [0, 1] → R+ is twice continuously differentiable,

strictly increasing, and concave: r′(σ) > 0 > r′′(σ) for all σ > 0, with r(0) = 0 and

limσ↓0 r
′(σ) = ∞. If a criminal is caught, they face a fixed punishment f > 0.12 Thus,

given enforcement e, a criminal chooses the severity σ of their offense to maximize expected

criminal profits :

Π(σ, e) := r(σ)− ℘(e, σ)f. (1)

As a result, a potential criminal with outside option ω finds it optimal to commit a crime if

and only if, maxσ∈[0,1] Π(σ, e) ≥ ω. When the support of ω is bounded (i.e., w̄ < ∞), I will

assume that outside options are sufficiently spread, i.e. w̄ ≥ maxσ∈[0,1]Π(σ, 0), ensuring that

even in the absence of policing, some potential criminals prefer not to engage in crime.

I now turn to the payoffs of law enforcers. Enforcing the law is naturally costly. The

enforcement cost function c : [0, 1] → R+ is assumed to be twice continuously differentiable,

strictly increasing, and strictly convex: c′(e), c′′(e) > 0 for e > 0, with c(0) = c′(0) = 0.

As previously explained, a law enforcer encounters criminals at rate κ and, conditional on

this event, successfully apprehends the offender with probability ℘(e, σ). Therefore, given a

crime rate κ and offense severity σ, a law enforcer chooses effort e to maximize arrest gains

net of enforcement costs:

V (e, σ, κ) := κ℘(e, σ)B − c(e), (2)

where B > 0 denotes the enforcement payoff per criminal apprehended. This formulation

reflects an arrest-maximizing objective rather than a crime-minimization goal. As discussed

in the introduction, this behavior is supported by growing empirical evidence on police

incentives (e.g., Stashko, 2022). It also arises naturally in this decentralized framework,

where enforcers are modeled as “small” agents—each taking the crime rate as given and

exerting discretionary effort to maximize arrests. In Section §7.1, I examine the polar case

of centralized enforcement, where enforcers can internalize the effect of their joint actions on

the aggregate crime rate in order to maximize total payoffs (2).

Equilibrium. In equilibrium, potential criminals and enforcers optimize independently and

simultaneously. Formally, an equilibrium is a 5-tuple (e∗, σ∗, ω̄∗, κ∗, α∗) such that:

(i) Given enforcement e∗, severity σ∗ maximizes criminal profits (1).

12Section §7.2 examines the case in which punishment f depends on the offense severity σ.
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(ii) Given severity σ∗ and crime rate κ∗, enforcement e∗ maximizes (2).

(iii) Given (σ∗, e∗), marginal criminal ω̄∗ makes zero profits, i.e. Π(σ∗, e∗) = ω̄∗, while

potential criminals with low outside options ω ≤ ω̄∗ commit crimes.

(iv) Given (e∗, σ∗, ω̄∗), the crime rate is κ∗=G(ω̄∗), and the arrest rate α∗=℘(e∗, σ∗)κ∗.

4 Equilibrium Analysis

The Optimal Severity Locus OS. I begin by characterizing the optimal crime severity.

Observe that if maximal severity σ = 1 were optimal even under maximal enforcement

e = 1, then it would remain optimal for all lower levels of enforcement, thereby trivializing

the analysis. To ensure that criminals eventually face a non-trivial trade-off when choosing

offense severity, a necessary condition on the primitives is the following:

r′(1) < ℘σ(1, 1)f. (3)

This condition effectively requires punishment f to be sufficiently high, f > r′(1)/℘σ(1, 1),

thereby ensuring that—at the margin—the expected legal cost outweighs the benefits when

enforcement e is high enough. I henceforth focus on settings for which inequality (3) holds.

Let e := inf{e ∈ [0, 1] : r′(1) ≤ ℘σ(e, 1)f}.13 This enforcement cutoff represents the

lowest enforcement level such that any e > e would induce criminals to choose non-maximal

severity, σ < 1. In other words, the optimal crime severity is maximal for all enforcement

levels e ∈ [0, e]; otherwise, it is non-maximal and characterized by the first-order condition:14

Πσ(σ, e) = r′(σ)− ℘σ(e, σ)f = 0. (4)

At any interior maximum, the marginal expected punishment equals the marginal returns

from crime. That is, when policing is not too low, a criminal finds it optimal to reduce their

offense severity in order to decrease the chance of being apprehended. Thus, in addition to

traditional deterrence effects that operate via criminals’ extensive margin, here policing also

has intensive effects by discouraging the “size” of the offense.

Now, because the capture chance ℘ is supermodular, the criminal profit function Π(σ, e)

(see (1)) is submodular in (e, σ). Indeed, differentiating Πσ from (4) in enforcement level e

yields:

Πσe(σ, e) = −℘σe(e, σ)f ≤ 0. (5)

13Since e 7→ ℘σ(e, 1) is continuous and strictly increasing, e is given by the solution to r′(1) = ℘σ(e, 1)
whenever it exists on [0, 1].

14For any enforcement level e ≥ 0, the optimal crime severity is strictly positive, as limσ↓0 r
′(σ) = ∞.
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So, by Topkis’ theorem (Topkis, 1978), the optimal crime severity Σ(e) := argmaxσ∈[0,1]Π(σ, e)

falls in enforcement level e. In other words, enforcement e and crime severity σ are strate-

gic substitutes for criminals (Bulow et al., 1985): greater enforcement lowers the marginal

profitability of high severity crimes. Finally, the Implicit Function Theorem ensures that

Σ : [0, 1] → [0, 1] is continuous and differentiable almost everywhere. The OS locus depicts

all pairs (σ, e) for which severity σ is optimal given e, as seen in the right panel of Figure 1.

The Supply of Crime. I now examine the potential criminals’ extensive margin. Given

enforcement e ≥ 0, a potential criminal who commits a crime can get a payoff no greater

than ω̄(e), where

ω̄(e) := max
σ≥0

r(σ)− ℘(e, σ)f. (6)

By the Envelope Theorem, ω̄(·) falls in e at rate ω̄′(e) = −℘e(e,Σ(e))f < 0. Thus, profits

from crime are the lowest when there is full enforcement. Without loss of generality, I assume

that ω̄(1) ≥ 0.15 Consequently, ω̄(e) effectively characterizes the marginal criminal who is

indifferent between engaging in crime and taking the outside option, given enforcement e. It

follows that potential criminals with outside options ω ≤ ω̄(e) enter the market, giving rise

to supply of crime,

KS(e) := G(ω̄(e)), (7)

which naturally falls as the enforcement level e rises.

The induced “demand” for crime. I now study the law enforcers’ optimization problem.

Faced with a crime rate κ > 0 of severity σ > 0 crimes, a law enforcer maximizes (2). Notice

that, at the optimum, enforcement must be strictly positive, since c′(0) = 0 and ℘(·, σ) is

strictly increasing and concave; thus, V (e, σ, κ) must strictly increase in e near e = 0. In

addition, if the crime rate is not too high, the optimal enforcement is non-maximal, and thus

it solves the first-order condition:

Ve(e, σ, κ) = κ℘e(e, σ)B − c′(e) = 0. (8)

Let E(κ, σ) := argmaxe∈[0,1] V (e, σ, κ) denote the optimal enforcement level, given κ and σ.

Notice that the payoff function V (·) in (2) is supermodular in (e, (σ, κ)). Indeed,

Veσ(e, σ, κ) = κ℘eσ(e, σ)B ≥ 0 and Veκ(e, σ, κ) = ℘e(e, σ)B > 0

Hence, by Topkis (1978), the optimal enforcement E(κ, σ) rises in (κ, σ), in that if σ′ ≥ σ

15Otherwise, there would exist a cutoff ē < 1 such that it is unprofitable to engage in crime provided e ≥ ē,
leading to zero crime. But this cutoff is irrelevant as zero crime can never be an equilibrium outcome, since
law enforcers would find it suboptimal to keep enforcement high given their incentives in (2).
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and κ′ ≥ κ, then E(κ′, σ′) ≥ E(κ, σ). In particular, unlike criminals, for a fixed crime rate

κ, effort e and severity σ are strategic complements for law enforcers. Moreover, E(·, σ) ≡ 1

when the crime rate is high enough, namely, κ ≥ κ̄ ≡ c′(1)/[℘e(1, σ)B].

To construct a familiar way to perform comparative statics, notice that the enforcers’

optimization gives rise to a “demand” for crime: How much crime κ makes enforcement e

optimal for law enforcers? Since E(·, σ) is strictly increasing on [0, κ̄], its inverse KD(·;σ) :
[0, 1] → [0, κ̄] is well-defined, reflecting a derived demand for crime:

KD(e;σ) := c′(e)/[℘e(e, σ)B]. (9)

That is, enforcement e is optimal provided the crime rate κ = KD(e;σ). In the left panel

of Figure 1, the derive demand KD(·;σ) slopes up in e and shifts left in the severity of the

offense σ. Intuitively, for any crime rate κ > 0, more severe offenses elicit more enforcement.

The market clearing locus MC. Equipped with “demand and supply” curves, I

introduce the market clearing locus, which describes all pairs (e, σ) for which the market

“clears,” namely, e = E(KS(e), σ). When crime severity is not too high, the latter condition

can be expressed as KD(e;σ) = KS(e), namely, demand equals supply. In general, for each

σ ∈ [0, 1], the market clearing enforcement eC : [0, 1] → [0, 1] is given by:

eC(σ) := sup
{
e ∈ [0, 1] : KS(e) ≥ KD(e;σ)

}
. (10)

Lemma 1 shows that, by the continuity and monotonicity of the supply and demand curves,

for each crime severity σ > 0 there exists a unique enforcement level e that “clears” the

market. Two observations are in order at this point.

First, depending on primitives, there could exist a unique severity level σ̄ such that the

market clearing enforcement is maximal for all σ ≥ σ̄. This value is defined as the unique

solution to KS(1) = KD(1; σ̄). As KD decreases in σ, it follows that KS(1) > KD(1, σ) for all

σ > σ̄, and thus eC(σ) ≡ 1 on [σ̄, 1]—explaining the flat region depicted in Figure 1 (middle).

Second, the market clearing locus MC must be upward sloping in (σ, e)-space. To see

this, consider Figure 1 (left panel). There, a rise in severity σ shifts KD left, leaving KS

unaffected. Hence, the market clearing enforcement rises along KS, indicating that pairs

(σ, e) co-move along MC, namely, the map σ 7→ eC(σ) is increasing in σ.

Equilibrium. The behavior of all agents is effectively projected into a graphical framework

in the space of severity and enforcement levels (σ, e), in which any equilibrium is characterized

by the optimal severity OS and market clearing MC loci. In equilibrium, criminal severity

σ∗ must be a best-reply to enforcement e∗, while enforcement level e∗ must clear the market
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Figure 1: The left panel shows the crime supply curve KS(e), which slopes downward in
enforcement e, and the induced crime demand KD(e;σ), which slopes upward in e for a given
offense severity σ. As σ increases from σℓ to σh, the demand curve shifts upward, resulting in a
higher market-clearing enforcement level. The middle panel depicts the market-clearing locus
MC, which maps each offense severity σ to the enforcement level e that clears the market.
The right panel depicts MC with the optimal severity locus OS, which maps enforcement
levels to criminals’ optimal severity choices, illustrating the existence and uniqueness of
equilibrium as the intersection of these two curves.

given severity σ∗. Thus, the intersections of OS and MC characterize all equilibria in

the game. Moreover, by the respective slopes of OS and MC, there is a unique intersection

(σ∗, e∗), thereby proving the existence and uniqueness of an equilibrium; see Figure 1 (right).

Proposition 1 There exists a unique equilibrium (e∗, σ∗, κ∗, α∗).

Section §5 presents a fully solved numerical example illustrating how equilibrium out-

comes vary with the model’s primitives. Figure 2 depicts numerical simulations, showing

three distinct equilibrium configurations. In the top-left panel, the equilibrium features

maximal enforcement and low crime severity. The bottom left panel shows the opposite

case. In the right panels, both enforcement and severity lie strictly between zero and one.

The example shows how the nature of equilibrium—whether it involves maximal severity,

full enforcement, or interior values—depends on the punishment level f and the enforce-

ment payoff B. In particular, Figure 3 shows that an equilibrium with low enforcement

(e∗ ≤ e) and maximal severity (σ∗ = 1) can arise when B is sufficiently small and f lies in

an intermediate range—not too low to be ineffective, but not so high as to strongly deter

crime. As explained in the next section, this could be more effectively counteracted with an

strengthening of enforcement incentives (B) rather than an increase in punishment (f).
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Figure 2: All panels use the following functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = eσ;

and G(ω) = ω. Parameter values vary across panels as follows. Top left: (B, f) = (20, 1);
top right: (B, f) = (10, 2); bottom left: (B, f) = (1, 1); bottom right: (B, f) = (3, 1).

5 An Illustrative Example

Consider enforcement costs c(e) = e2/2; criminal rewards r(σ) =
√
σ; capture chance

℘(e, σ) = eσ; and uniformly distributed outside options on [0, 1], i.e., G(ω) = ω. To satisfy

condition (3), penalties are assumed to be high enough, or f > 1/2.

First, I find the optimal severity locus OS. Given enforcement e, a criminal chooses the

severity of their offense σ to maximize profits (1). In this example, e solves r′(1) = ℘σ(e, 1)f ,

namely, e = 1/(2f) ∈ (0, 1). Thus, the optimal crime severity is maximal, i.e., Σ(e) ≡ 1 for

all e ∈ [0, e]; otherwise, Σ(e) ∈ (0, 1) solves the first-order condition (4), or:

Σ(e) ≡
(

1

2ef

)2

, ∀e ∈ (e, 1].

Second, I find the supply curve. Recall that the marginal criminal ω̄(e) ≡ Π(Σ(e), e).

Thus, ω̄(e) ≡ 1 − ef for e ∈ [0, e], and ω̄(e) ≡ 1/(4ef) for e ∈ (e, 1]. Since outside options
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are uniformly distributed on [0, 1], the “supply of crime” is simply KS(e) ≡ G(ω̄(e)) = ω̄(e):

KS(e) =

1− ef, if e ∈ [0, e];

1
4ef

, if e ∈ (e, 1].

Third, I turn to the law enforcement side. Given crime severity σ and crime rate κ, a

law enforcer chooses e ∈ [0, 1] to maximize (2). As outlined in §4, the optimal enforcement

E(κ, σ) ≡ 1 for κ ≥ κ̄ = 1/(σB); otherwise, E(κ, σ) < 1 and thus given by the first-order

condition (8), namely, E(κ, σ) ≡ κσB. The derived demand for crime is then:

KD(e;σ) =
e

σB
.

Following §4, the market clearing locus MC consists of all pairs (σ, e) such that e “clears”

the market given σ, namely, e = eC(σ), where eC(·) is given by (10).

Finally, an equilibrium is generated by a tuple (σ∗, e∗) such that e∗ = eC(σ
∗) and σ∗ =

Σ(e∗). I next show that the properties of the equilibrium depend on both the incentives of

law enforcers and potential criminals, captured by the parameters B and f , respectively. To

this end, let σ̄ = 4f/B ∈ R+. There are two cases to consider.

• Case 1: σ̄ ≤ 1, or 4f ≤ B. Then KS(1) = KD(1; σ̄), and so eC(σ) ≡ 1 for all σ ∈ [σ̄, 1].

Otherwise, for each σ < σ̄, it follows that KS(1) < KD(1, σ), and thus eC(σ) equals

the enforcement level e ∈ (0, 1) for which supply equals demand, KS(e) = KD(e, σ).

Consequently, the equilibrium could display either full or partial policing.

Indeed, if σ̄ ≤ Σ(1), a condition that reduces to B ≥ 16f 3, then the unique equilibrium

entails e∗ = 1 and σ∗ = Σ(1) = 1/(4f 2) < 1, as seen in Figure 2 (top left panel).

Otherwise, equilibrium enforcement e∗ > e and so (e∗, σ∗) jointly solve KD(e∗;σ∗) =

KS(e∗) and σ∗ = Σ(e∗), yielding:

e∗ =

(
B

16f 3

) 1
4

∈ (0, 1) and σ∗ =
1√
Bf

∈ (0, 1). (11)

This equilibrium can be seen in the top right panel of Figure 2.

• Case 2: σ̄ > 1, or 4f > B. Here, the market clearing locus obeys eC(σ) < 1 for all

σ ∈ [0, 1]. As in the previous case, two possible equilibria can emerge depending on

primitives. In the bottom left panel of Figure 2, eC(1) ≤ e, or Bf ≤ 1, and thus the

equilibrium exhibits maximal crime severity σ∗ = 1 and low enforcement e∗ ≤ e, where

13



Figure 3: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = eσ; and G(ω) = ω.

e∗ = eC(1), i.e.:

e∗ =
B

1 +Bf
∈ (0, e].

Conversely, if Bf > 1 so that eC(1) > e, then e∗, σ∗ ∈ (0, 1) are given by (11), as

depicted in the bottom right panel of Figure 2.

Figure 3 illustrates the regions of the (B, f) parameter space in which either enforcement

effort or crime severity is maximal. Notably, achieving full enforcement does not necessarily

require high enforcement benefits B. For example, an equilibrium with maximal policing

and low crime severity can arise even when both punishment and enforcement incentives are

relatively low—for instance, with f ≈ 1/2 and B ≈ 2. Conversely, deterring severe offenses

(i.e., avoiding σ∗ = 1) requires not only increasing punishment f but also strengthening

enforcement incentives through a higher B. Indeed, if B is fixed and sufficiently small,

increasing f alone may be insufficient to shift the equilibrium out of the region (shown in

light blue) where severity remains maximal.

6 Comparative Statics

As illustrated in §5, equilibrium enforcement and crime severity are both strictly positive,

though either may be maximal depending on the model’s primitives. To streamline the

analysis, I focus on interior equilibria, where e∗ ∈ (0, 1) and σ∗ ∈ (0, 1). This setting not

only allows me to use the first-order conditions to conduct comparative statics, but also

captures an environment in which equilibrium outcomes are sensitive to policy changes.
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6.1 Harsher Punishment

Increasing penalties to deter crime is a policy intervention that directly impacts the supply

side. As originally formalized by Becker (1968), when penalties become more severe, the

expected cost of committing a crime rises, all else equal, leading potential offenders to

abstain from criminal activity. However, a reduction in crime may, in turn, lead to a decline

in enforcement efforts, since law enforcers allocate resources based on the prevalence of crime.

In fact, a lower crime rate could reduce the expected benefits of maintaining high enforcement

levels. If enforcement falls, some undeterred criminals may respond by committing more

severe offenses, generating a feedback loop between enforcement and criminal behavior.

Motivated by this consideration, I examine how harsher penalties f influence equilibrium

outcomes. I show that increasing punishment severity unambiguously reduces the equilib-

rium level of enforcement. However, it does not necessarily lead to a reduction in the severity

of offenses. As recently discussed, as enforcement decreases, the marginal returns to commit-

ting more severe crimes increase—see equation (5). Proposition 2 provides clear sufficient

conditions on the detection probability function ℘(·) under which higher penalties not only

reduce the overall crime rate but also lead to a decline in offense severity.

Proposition 2 (Harsher Punishment) If punishments are harsher (i.e., f rises), then

the enforcement level e∗ falls. The arrest rate α∗ and the offense severity σ∗ both fall,

provided the detection chance ℘(e, σ) is log-submodular in (e, σ). The crime rate κ∗ falls if

the detection chance ℘(e, σ) is log-modular in ℘(e, σ).16

The intuition behind the proof is as follows. When penalties f increase, criminals are

more deterred, reducing the overall crime supply—formally, KS(e; f) shifts left, as seen in the

right panel of Figure 4. Since enforcement is costly and not directly affected by penalties f ,

this decline in crime incentivizes law enforcers to scale back policing, shifting the market

clearing MC locus down in the left panel of Figure 4. On the other hand, the optimal

severity OS locus shifts left, as harsher penalties discourage severe offenses.

These forces create opposing effects on equilibrium crime severity. The net impact de-

pends on a key primitive of the model: the detection probability function ℘(e, σ). In par-

ticular, if the complementarity between enforcement effort e and crime severity σ in the

detection process is not too strong—specifically, if ℘ is log-submodular—then an increase in

punishment leads to fewer arrests, less severe offenses, and, under a stronger condition on ℘

(log-modularity), a lower crime rate. The technical details are provided in Appendix A.3.

16A positive function h > 0 is log-supermodular (log-submodular) if log(h) is supermodular (submodular).
Hence, a log-modular function is both log-supermodular and log-submodular
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Figure 4: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = eσ; and G(ω) = ω. The

figure depicts an increase in punishment f from f = 1 to f = 2. Left panel: The market
clearing locus MC shifts left, while the optimal severity OS locus shifts right. Right panel:
The supply curve KS shifts left, while the demand curve KD shifts right as a byproduct of
lower severity offenses. The enforcement level, crime severity, and crime rate all fall.

From a technical perspective, this result underscores the role of complementarity in the

detection probability function. On one hand, since ℘(e, σ) is assumed to be supermodular, a

reduction in enforcement following an increase in punishment incentivizes criminals to engage

in more severe offenses. On the other hand, if this complementarity is not too strong—

specifically, when ℘ is log-submodular17— the direct deterrent effect of harsher punishment

dominates the indirect enforcement-driven effect, ultimately leading to a reduction in offense

severity. Similarly, for the overall crime rate to decline, additional restrictions are necessary:

while lower enforcement encourages more criminal entry, stricter punishments discourage

it. To ensure that the crime rate does not rise—namely, for the direct deterrent effect to

prevail—it is sufficient that the probability of detection is log-modular.

Proposition 2 echoes the point that discretionary enforcement can limit the effectiveness

of policies aimed at reducing crime.18 The proposition further reveals that the effectiveness

of penalties hinges on how the probability of detection responds to both crime intensity

and enforcement effort. When greater offense severity enhances policing efficiency (e.g., by

generating more evidence) but not excessively so, then the reduction in enforcement caused

by increased punishment will not fully offset the intended deterrent effect of the policy.

Outside this world, the outcome relies on the model primitives in complex ways.

17If ℘ is log-submodular, then the cross-partial derivative ℘eσ is bounded; indeed, log-submodularity
implies log(℘)eσ ≤ 0 or (℘σ/℘)e ≤ 0, which is equivalent to ℘eσ ≤ ℘σ℘e/℘.

18Recently, Gonçalves and Mello (2023) empirically examined the role of police discretion in public safety,
in a context in which police officers exercise discretion in assigning fines for traffic violations. They find
that while stricter sanctions reduce future violations, discretionary enforcement can undermine public safety
compared to a counterfactual setting without police discretion.
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Remark 1 (Log-Modularity in Detection Probability) First, note that any detection

technology with a “Cobb-Douglas” structure—where detection is multiplicative in enforce-

ment and offense severity, such as ℘(e, σ) = eaσb with a, b > 0—satisfies log-modularity (and

therefore log-submodularity). Hence, all the predictions of Proposition 2 apply in this case.

Second, the assumption that ℘(e, σ) is log-modular is not merely a technical convenience.

It can be grounded in a simple institutional mechanism in which detection occurs in two

stages. First, citizens report offenses to law enforcement with probability ρ(σ), increasing

in offense severity. Second, conditional on a report, law enforcers exert effort e and success-

fully apprehend the offender with probability δ(e), increasing in e. The resulting detection

probability is then given by ℘(e, σ) = δ(e) · ρ(σ), which is naturally log-modular in (e, σ).

This structure reflects observed features of real-world enforcement, where detection depends

both on public cooperation and on the discretionary effort of law enforcers.19

6.2 Better Outside Options

Standard economic logic suggests that individuals weigh the benefits and costs of legal ver-

sus illegal activities, meaning that access to legitimate opportunities—such as employment,

welfare support, or social insurance—can shape criminal behavior. When outside options

deteriorate, individuals may turn to crime, as predicted by Becker (1968). But how does

this shift affect the severity of their offenses and the corresponding enforcement response?

To answer this question, index the outside option distribution G(ω|φ), where φ ∈ R. Say
that outside options improve if G(·|φH) < G(·|φL) when φL < φH , namely, G(·|φH) is better

than G(·|φL) in the sense of First-Order Stochastic Dominance. I find that when outside

options change, the amount of crime and the severity of offenses are negatively related.

Proposition 3 (Better Outside Options) If outside options improve, then enforcement

level e∗ and crime rate κ∗ both fall, while offense severity σ∗ rises. The arrest rate α∗ falls

if the detection chance ℘(e, σ) is log-supermodular in (e, σ).

Proof: First, the supply of crime KS(e|φ) ≡ G(ω̄(e)|φ) falls in φ for any enforcement e, while

the demand for crime KD is unaffected; hence, the market clearing enforcement falls along

the demand KD. Thus, as seen in the left panel of Figure 5, the market clearing locus MC
19According to the Bureau of Justice Statistics, reporting rates for violent crimes are significantly higher

than for property crimes, suggesting that reporting likelihood increases with crime severity. See https:

//bjs.ojp.gov/library/publications/criminal-victimization-2023. See also Doleac and Sanders
(2015), who examine the impact of ambient light on crime, leveraging Daylight Saving Time as a shock
to visibility. They find that increased daylight during evening hours reduces robberies, underscoring the
potential role of visibility and informal detection (“eyes on the street”).
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Figure 5: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = eσ; B = 10 and f = 1. The

figure depicts an improvement in outside options, changing from G(ω) = ω to G(ω) = ω2.
Left panel: The market clearing locus MC shifts right, while the optimal severity OS locus
is unaffected. Right panel: The supply curve KS shifts left, and does the demand curve KD

as crime severity rises. Overall, the crime rate falls but the offense severity rises.

shifts down in (σ, e)-space, and since the optimal severity locus OS is constant in φ, by (4),

the equilibrium enforcement level e∗ falls but the offense severity σ∗ rises.

Now the crime rate falls due to two reinforcing effects: supplyK(·|φ) and demandKD(·, σ)
both shift left (see Figure 5, right). Finally, using (9), the arrest rate is given by A(e, σ) :=

℘(e, σ)KD(e, σ) = c′(e)℘(e, σ)/(℘e(e, σ)B). Notice that, since ℘e > 0 ≥ ℘ee, the ratio ℘/℘e

increases in e. Also, if ℘(e, σ) is log-supermodular in (e, σ), then ℘/℘e decreases in σ (as

log-supermodularity implies ℘e/℘ is weakly increasing in σ). Thus, since c′′ ≥ 0, function

A(e, σ) increases in e and decreases in σ. Altogether, since better outside options lead to

less enforcement e∗ and more severe offenses σ∗, the arrest rate α∗ = A(e∗, σ∗) must fall. □

Reversing the logic, Proposition 3 finds that worse outside options not only raise the

number of individuals engaging in crime, but also decreases the severity of each offense.

This result seems to be consistent with the empirical literature. For example, Bignon et al.

(2015) documents the evolution of crime rates in France in 19th century, finding that from

1826-1936, the phylloxera crises destroyed 40% of France’s vineyards—which can be viewed a

negative income shock, or worse outside options—causing a substantial increase in property

crime and a significant decrease in violent crime. More recently, Melander and Miotto

(2023) examine the impact of the 1834 Poor Law Amendment Act on crime in England and

Wales, analyzing how the reduction in welfare support affected criminal activity. They find

that areas experiencing greater cuts in welfare spending saw a significant rise in non-violent

property crimes such as larceny. Similarly, Giulietti and McConnell (2024) investigate the

impact of the UK’s Welfare Reform Act 2012 on crime, focusing on how austerity-driven
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welfare cuts influenced criminal behavior. They find that areas more exposed to the reforms

experienced a significant rise in crime, driven primarily by new individuals engaging in

criminal activity rather than existing offenders committing more crimes.20

6.3 Changing the Detection Technology

The probability of detection can be influenced by environmental or technological factors. For

example, Vollaard (2017) examines illegal marine oil discharges and finds that ship operators

strategically commit offenses at night when detection is less effective. From a technological

perspective, Anker et al. (2021) analyze the expansion of Denmark’s DNA database and

show that increasing the likelihood of offender identification significantly reduces crime.

Motivated by these findings, this section examines how equilibrium outcomes change

when the probability of detection varies. To this end, suppose the detection probability is

indexed by a “technology” parameter φ ∈ (0, 1]. In particular, assume that the parametrized

detection function ℘̃(e, σ|φ) satisfies ℘̃(e, σ|φ) ≡ φ℘(e, σ), where ℘(e, σ) satisfies all assump-

tions stated in Section §3, so that the baseline case is recovered by setting φ = 1. Notice

that, an increase in technology φ not only raises the likelihood of detection (℘̃φ > 0), all else

equal, but also enhances the effectiveness of policing at the margin (℘̃eφ > 0).

Unlike the previous exercises in this section, here a change in detection technology di-

rectly affects both sides of the market—potential criminals and law enforcers—complicating

the comparative statics. I next show that, provided the supply of crime is sufficiently elastic

in φ, both the equilibrium offense severity and the enforcement level decrease as detection

technology improves. More precisely, let ω̄(e|φ) := maxσ∈[0,1] r(σ) − ℘̃(e, σ|φ)f denote the

potential criminal who is indifferent between committing a crime and abstaining when polic-

ing is e and technology is φ. The supply curve KS(e|φ) = G(ω̄(e|φ)) is said to be sufficiently

elastic in φ, given e, if ∣∣∣∣∣φKS
φ(e|φ)

KS(e|φ)

∣∣∣∣∣ ≥ 1,

which can be equivalently expressed as (g(ω̄)/G(ω̄))℘̃f ≥ 1, using the envelope theorem.

Proposition 4 (Detection Technology) Suppose that (g(ω̄)/G(ω̄))℘̃f ≥ 1. If the detec-

tion technology improves (i.e., φ rises), then the enforcement level e∗ falls. In addition, the

offense severity σ∗ and the arrest rate α∗ both fall if ℘̃ is log-submodular in (e, σ). Finally,

20Britto et al. (2022) examine the impact of job loss and unemployment insurance on crime in Brazil,
using mass layoffs as an exogenous shock to employment. They find that displaced workers are more likely
to engage in criminal activity, with property crime increasing proportionally more than violent crime.
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the crime rate κ∗ falls, if one further assumes that ℘̃ is log-modular in (e, σ).

Consider an increase in the detection technology parameter φ. First, this increases the

likelihood that criminals are caught, leading to a reduction in both criminal entry and offense

severity. As seen in Figure 6, both the optimal severity locus OS and the crime supply curve

KS shift left. Meanwhile, a higher probability of detection enhances the effectiveness of

law enforcement, reflected by an upward shift in the demand curve KD. As a result, the

overall impact on the market-clearing locus MC is ambiguous. Appendix A.4 shows that if

the supply curve is sufficiently elastic with respect to the detection probability—formally, if

g(ω̄)/G(ω̄) · ℘̃f ≥ 1—then the supply-side effect dominates, causing MC to weakly decrease.

In Figure 6 (left panel), the market clearing locusMC remains unchanged since the functional

forms used render the supply to be unit elastic in φ, or g(ω̄)/G(ω̄)·℘̃f = 1;21 thus, the effects

of the supply and demand shifts on the market clearing enforcement offset each other.

Since OS contracts while MC expands, the equilibrium enforcement level e∗ unambigu-

ously decreases. However, the effect on equilibrium severity σ∗ is more subtle. Appendix A.4

demonstrates that if the probability of detection is log-submodular in (e, σ), then the OS
locus shifts downward more than MC, leading to a reduction in offense severity σ∗.

A few observations are in order. First, from a technical standpoint, Proposition 4 assumes

that the supply of crime is sufficiently elastic. While this assumption depends on endogenous

variables and could be verified ex post, it can also be empirically tested. For instance, Anker

et al. (2021) finds that a 1% increase in the probability of detection leads to more than a

2% reduction in crime, consistent with a sufficiently elastic supply curve.

Second, from an economic perspective, the result highlights the complex feedback effects

introduced by improvements in detection technology, showing that reductions in crime and

offense severity are not necessarily guaranteed. However, the analysis also identifies a clear

sufficient condition on the probability of detection under which technological advancements

would lead to desirable outcomes, such as reductions in crime, arrests, and offense severity.

These new predictions on crime severity and enforcement levels could be empirically tested,

providing a way to refine or complement existing findings from the aforementioned studies.

Finally, from a policy viewpoint, Proposition 4 suggests that in environments where

criminals are naturally harder to detect—such as at nighttime—one should expect higher

21Consider the example from Section §5, but with detection technology ℘̃(e, σ|φ) ≡ φeσ, φ ∈ (0, 1].
Notice that in an interior equilibrium, the optimal severity is given by Σ(e|φ) = ( 1

2φef )
2, and thus ω̄(e|φ) =

℘̃(e,Σ|φ)f = 1/(4φef). Consequently,∣∣∣φKS
φ(e|φ)

KS(e|φ)

∣∣∣ = g(ω̄)℘̃f

G(ω̄)
=

℘̃f

ω̄
= 1.
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Figure 6: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘̃(e, σ|φ) = φeσ; G(ω) = ω; B = 10

and f = 5. The figure depicts an improvement in the detection probability, captured by
varying φ from φ = 0.5 to φ = 1. Left panel: The optimal severity locus OS shifts left,
while the market clearing locus MC is unchanged, as a consequence of the supply curve
being unit elastic in φ. Right panel: The supply curve KS and demand curve KD shift left,
leaving the market clearing enforcement unaffected. Overall, the enforcement level falls but
so does the offense severity.

crime rates, increased enforcement activity, and more severe offenses compared to daytime. A

natural policy implication is to modify the environmental conditions that shape the behavior

of both criminals and law enforcers. Recently, Chalfin et al. (2022) examine the impact of

improved street lighting on crime finding a more pronounced reduction in violent crimes

compared to property crimes, without a corresponding increase in arrests. This empirical

findings are consistent with Proposition 4 in that increasing the detection probability can

deter crime and severity without eliciting greater enforcement efforts.

6.4 Strengthening Enforcement

Finally, I examine the equilibrium effects of incentivizing arrests on crime outcomes. In

empirical research, arrests are often used as a proxy for police enforcement. However, as this

paper demonstrates, the relationship between enforcement and arrests is more nuanced, as

the arrest rate depends not only on law enforcement behavior but also on the level of crime.

Consequently, an increase in arrests does not necessarily indicate greater enforcement, nor

does a decrease in arrests imply less enforcement. While the previous comparative statics

in this section revealed a positive association between enforcement and arrests, the next

result highlights a case where these two variables need not move together in equilibrium.

Specifically, I show that when law enforcers have stronger incentives to apprehend criminals—

formally, when B increases—equilibrium enforcement rises, but the arrest rate falls.
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Figure 7: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = eσ; G(ω) = ω; and f = 2.

The figure depicts an increase arrest incentives B, increasing from B = 5 to B = 10. Left
panel: The market clearing locus MC shifts left, while the optimal severity OS locus is
unchanged. Right panel: The supply curve KS is unaffected, while the demand curve KD

shifts left but then it is partially offset as a result of lower offense severity. The enforcement
level, crime severity, and crime rate all fall.

Proposition 5 (Greater Enforcement Payoff) If the payoff per criminal apprehended

B rises, then the enforcement level e∗ rises, while the offense severity σ∗ and crime rate κ∗

fall. The arrest rate α∗ falls if the detection chance ℘ and criminal rewards r satisfy:

℘σσ

℘σ

− ℘σe

℘e

− r′′

r′
≤ 0. (12)

This condition holds if ℘ is log-modular in (e, σ), and ℘ and r are isoelastic in σ.

Suppose that the enforcement payoff B increases. In the (κ, e)-space, the derived demand

for crime KD(e, σ) = c′(e)/[℘e(e, σ)B] shifts left, while the supply curve KS(e) remains

unchanged. Consequently, for a fixed offense severity σ, the market-clearing enforcement

level must rise. In the (σ, e)-space, this translates into a leftward shift of the market-clearing

locus MC, as shown in the left panel of Figure 7. Because the optimal severity locus OS
is unaffected by B, the equilibrium enforcement level e∗ increases, while the corresponding

offense severity σ∗ decreases. As a result, the equilibrium crime rate κ∗ = G(ω̄(e∗)) falls. The

effect on the arrest rate α∗ = ℘(e∗, σ∗)κ∗, however, is more subtle. While κ∗ falls with B, the

change in α∗ depends on how B influences the detection probability ℘(e∗, σ∗). Appendix A.5

shows that under condition (12), the detection chance ℘(e∗, σ∗) falls with B, implying that

the arrest rate α∗ must also fall.

Proposition 5 uncovers a counterintuitive yet important insight: increasing enforcement

efforts can actually lead to fewer arrests. The underlying mechanism is that stronger incen-
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tives for law enforcers to apprehend criminals drive them to exert greater effort, which in turn

deters individuals from both committing crimes and engaging in more severe offenses. As

a result, potential offenders respond with fewer and less severe offenses, ultimately lowering

the overall crime rate. Consequently, despite higher enforcement efforts, the total number of

arrests decreases simply because fewer individuals are committing crimes in the first place.

7 Extensions

7.1 Centralized Enforcement

I now turn to the study of centralized enforcement, as analyzed in Lazear (2006), Eeck-

hout et al. (2010), and Gao and Vásquez (2024). These studies examine the effectiveness

of committing to policing strategies in contexts where a single police agency is responsible

for allocating resources.22 In this literature, the police agency typically seeks to minimize

total crime; however, some studies have also explored scenarios where the objective is to

maximize total arrests (e.g., Persico, 2002). Regardless of the specific enforcement goal, the

interaction between law enforcement and potential criminals takes on a sequential nature:

the police agency first selects an enforcement level e ≥ 0, and criminals then adjust their be-

havior in response. This structure highlights the strategic role of pre-committed enforcement

policies in shaping criminal incentives and, ultimately, crime outcomes. I next show that the

combination of centralized enforcement with arrest driven incentives can lead to undesirable

outcomes. Specifically, rather than reducing crime, it can incentivize more offenses, each of

greater severity, while simultaneously reducing overall enforcement effort.

Given enforcement level e ≥ 0, if a potential criminal chooses to commit a crime, then

the crime intensity must maximize criminal profits (1) and thus obey σ = Σ(e). In turn, the

mass of potential criminals who find it optimal to engage in crime, given e, must be given

by κ = KS(e). Thus, the police agency chooses enforcement level e ∈ [0, 1] to maximize

V(e) := V (e,Σ(e),KS(e)), where V (e, σ, κ) is given in (2). That is, the police agency solves:

max
e∈[0,1]

KS(e)℘(e,Σ(e))B − c(e)︸ ︷︷ ︸
V(e):=

.

Two observations are in order. First, the objective function is strictly increasing near e = 0,

and thus the optimizer eC := argmaxe∈[0,1] V(e) must be strictly positive. To see this, recall

22For instance, Eeckhout et al. (2010) provides empirical evidence of police agencies committing to targeted
crackdowns to enhance deterrence.
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that crime severity Σ(e) ≡ 1 for e ∈ [0, e], and thus Σ′(e) = 0 on [0, e). Consequently,

V ′(0) = KS(0)℘e(0, 1)B > 0,

where the inequality holds since KS(0) > 0, and ℘e(0, 1) > 0 as ℘ is strictly increasing in e.

Second, while the optimal centralized enforcement eC is positive, it could exhibit very

little enforcement compared to its decentralized counterpart, thereby increasing the marginal

returns of high severity offenses. Let (eC , σC , κC , αC) denote the centralized equilibrium, and

(e∗, σ∗, κ∗, α∗) denote its decentralized counterpart.

Proposition 6 Suppose that the arrest rate KS(e)℘(e,Σ(e)) is concave in enforcement e. If

e∗ < 1 then the centralized equilibrium entails less enforcement eC < e∗, more severity per

crime σC>σ∗, and more total crime κC>κ∗ than the decentralized counterpart. Also, if the

detection chance ℘ and criminal rewards r satisfy (12), crime severity is maximal σC = 1.

Proof: Notice that for almost all e,23

V ′(e) = KS(e)

(
℘e(e,Σ(e)) + ℘σ(e,Σ(e))

dΣ(e)

de

)
B +KS

e (e)℘(e,Σ(e))B − c′(e)

Meanwhile, in the decentralized equilibrium, if e∗ < 1 then it must, generically, satisfy

KS(e∗)℘e(e
∗,Σ(e∗))B − c′(e∗) = 0,

and thus

V ′(e∗) = KS(e∗)℘σ(e
∗,Σ(e∗))

dΣ(e∗)

de
B +KS

e (e
∗)℘(e,Σ(e∗))B < 0,

where the inequality follows as ℘σ > 0 ≥ dΣ/de and KS
e < 0. Since V(e) is concave in e

(as KS(e)℘(e,Σ(e)) is concave and c(e) is convex), it follows that eC < e∗. Consequently,

σC = Σ(eC) > σ∗ = Σ(e∗), and κC = KS(eC) > κ∗ = KS(eC).

Now, suppose that ℘ and r jointly satisfy (12). Then, the proof of Proposition 5 shows

that e 7→ ℘(e,Σ(e)) is decreasing in e > e, and since the crime rate KS(e) is also strictly

decreasing, it follows that total arrest KS(e) × ℘(e,Σ(e)) is a strictly decreasing function.

Therefore, maxe∈[e,1] V(e) = V(e), implying that eC cannot be above e; otherwise, one could

decrease e to increase arrest benefits while decreasing enforcement costs. As a result, the

optimizer eC ∈ (0, e] and so the resulting severity is maximal σC = Σ(eC) = 1. □

This result highlights a key institutional insight: while arrest driven incentives can be

effective in reducing crime when enforcement is decentralized (Proposition 5), this need not

23V(e) is not differentiable at e = e due to Σ(e) having a “kink” at e = e.
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extend to centralized settings. When enforcement is centralized and individual enforcers have

limited discretion, rewarding arrests may distort incentives and lead to detrimental outcomes.

In such contexts, a more appropriate objective for the police agency is not to maximize

arrests, but to minimize crime directly. This distinction underscores the importance of

aligning incentives with the institutional environment in which enforcement operates.

7.2 Convex Penalties

In this section, I demonstrate that the results of the paper extend to settings where penalties

depend on the severity of the offense. To illustrate this, and with a slight abuse of notation,

suppose that if a lawbreaker is caught, they must pay a fine f(σ), where f : [0, 1] → [0,∞)

is strictly increasing and convex, satisfying f ′(σ) > 0 and f ′′(σ) > 0 for σ > 0, with

f(0) = f ′(0) = 0. These conditions ensure that the severity of the penalty increases with the

severity of the offense at increasing rates. As a result, a criminal understands that increasing

the severity of their offense not only raises the likelihood of apprehension but also leads to

a harsher legal penalty if caught.

The criminal’s expected profit function (1) now takes the form:

Π(σ, e) := r(σ)− ℘(e, σ)f(σ).

Two key observations arise from this formulation and criminal optimality.

First, the optimal severity choice, captured by the function Σ(e) := argmaxσ Π(σ, e),

remains downward sloping. This property is driven by the submodularity properties of Π.

Specifically, for e, σ ∈ (0, 1), it follows:

Πσe(σ, e) = −℘σe(e, σ)f(σ)− ℘e(e, σ)f
′(σ) < 0.

This implies that Π is submodular in (e, σ), ensuring that Σ(e) decreases with e by Topkis’

Theorem (Topkis, 1998). Furthermore, the substitution effect between enforcement and

offense severity strengthens in this case. Even if ℘eσ = 0, it is still the case that Πσe(σ, e) < 0,

since the marginal cost of committing a more severe offense reflects not just the increased

detection probability but also the possibility of a higher fine, ℘×f ′(σ). However, enforcement

may have limited deterrent effect at low levels: if condition (3) is adjusted so that r′(1) <

℘σ(1, 1)f(1) − ℘(1, 1)f ′(1), then a threshold e ∈ (0, 1) would exist such that severity is

maximal, namely, Σ(e) ≡ 1 for all e ∈ [0, e]. Beyond this threshold, Σ(e) is determined by

the first-order condition, Πσ(Σ(e), e) ≡ 0, as in the baseline model.

The second key observation is that the supply of crime retains the core properties
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established in the baseline model. The marginal criminal’s outside option is given by

ω̄(e) := maxσ Π(σ, e). By the Envelope Theorem,

ω̄′(e) = −℘e(e,Σ(e))f(Σ(e)) < 0,

ensuring that the crime supply function KS(e) = G(ω̄(e)) remains downward sloping.

However, the comparative statics of penalties (cf. Proposition 2 in §6.1) is now more

complicated, as one must clearly specify the meaning of “harsher penalties.” To formalize

this, I introduce a parameterized family of fine function f(σ|φ), where φ ∈ R indexes penalty

severity and satisfies fφ(σ|φ) > 0. Appendix B establishes that Proposition 2 mostly gener-

alizes under these conditions, provided f(σ|φ) is log-supermodular in (σ, φ)—meaning that

a rise in φ increases the elasticity of fines with respect to offense severity (Proposition B.1).

A simple example that satisfies these properties is: f(σ|φ) = (1 + σ)φ with φ ≥ 1.

7.3 Submodular Detection Probability

In the baseline case, the detection probability ℘(e, σ) is assumed to be supermodular in

(e, σ). This section examines the opposite case, where ℘(e, σ) is submodular in (e, σ). This

reflects scenarios in which more severe offenses diminish the marginal effectiveness of greater

enforcement.24 Formally, I assume that ℘(e, σ) retains the same key properties from the

baseline model—namely, that it is increasing and concave in e and increasing and convex

in σ—except that now it is submodular in (e, σ), meaning that ℘eσ ≤ 0. A simple example

satisfying these conditions is ℘(e, σ) = e+ σ − eσ.

This assumption carries important implications. First, observe that criminal profits

Π(σ, e) in (1) are now supermodular in (e, σ) (cf. (5)). As a result, the optimal severity

function Σ(e) = argmaxσ Π(σ, e) is now increasing in e. This means that greater enforce-

ment incentivizes criminals to commit more severe offenses—a stark contrast to the baseline

case. However, despite this shift in offense severity, the crime supply curve KS(e) (see (7))

remains downward sloping. Indeed, differentiating K yields:

dKS(e)

de
= g(ω̄(e))ω̄′(e),

where the marginal criminal ω̄(e) (see (6)) satisfies ω̄′(e) = −℘e(e,Σ(e))f < 0. Thus, while

higher enforcement reduces the overall crime rate, it also leads to more severe offenses among

24The severity of an offense can reflect its level of sophistication. In cybercrime, minor offenses (e.g.,
phishing scams) are easily detected using standard tools (e.g., IP tracking), while more advanced crimes
(e.g., nation-state hacking, cryptocurrency laundering) leverage encryption and decentralized networks (Cong
et al., 2025), reducing the marginal effectiveness of additional enforcement.
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Figure 8: Functional forms: c(e) = e2/2; r(σ) =
√
σ; ℘(e, σ) = e + σ − eσ; G(ω) = ω;

and B = 1. The figure depicts how the equilibrium crime severity σ∗ (left panel) and the
equilibrium enforcement intensity e∗ (right panel) vary as punishment increases f ∈ [0.5, 1].

those who still choose to commit crimes.

For law enforcers, the derived demand for crime KD(e, σ) (9) remains increasing in e,

ensuring that the market-clearing enforcement level eC(σ) (see (10)) is well-defined. However,

a critical departure from the baseline case is that higher offense severity increases the demand

for crime, implying that the market clearing enforcement level eC(σ) must decrease in σ.

These changes lead to a key observation: the submodularity of ℘ reverses the monotonic-

ity of both the optimal severity locus (OS) and the market-clearing locus (MC). Never-

theless, since these two loci move in opposite directions, their intersection remains unique—

ensuring that a unique equilibrium exists, just as in the baseline model.

A natural question is: how do harsher punishments affect crime and enforcement in this

setting? Several key observations emerge. First, following the same logic as in the proof

of Proposition 2, the optimal severity function Σ(e; f) decreases with f for each fixed e.

Second, the crime supply function KS(e; f) shifts leftward, while the crime demand function

KD remains unchanged, implying that the market-clearing enforcement level eC(σ; f) must

also fall for each σ. Crucially, this means that—unlike in §6.1—both the OS and MC loci

contract, leading to an unambiguous reduction in offense severity at equilibrium; see the left

panel of Figure 8. However, the effect on the equilibrium enforcement level is non-monotone.

As seen in the right panel of Figure 8, numerical simulations indicate that enforcement effort

responds non-monotonically to increases in punishment severity, suggesting that harsher

penalties could elicit higher enforcement efforts, highlighting a complementary effect between

enforcement effort and punishment. This could help explain recent empirical findings.25

25Soliman (2022) provides empirical evidence that enforcement effort and punishment may operate as
complements. Analyzing a drug policy reform in Kentucky that reduced the size of drug-free school zones—
and thus lowered punishment severity—he finds that drug arrests fell by 13% in areas affected by the reform.
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8 Concluding Remarks

Motivated by the decentralized nature of law enforcement and the performance-driven dis-

cretion exercised by law enforcers, this paper develops a model that captures the interplay

between enforcement intensity and crime severity. While much of the existing literature

treats these decisions separately, this paper emphasizes that in many—if not all—cases,

they are jointly determined. For example, the probability of receiving a speeding ticket is

much higher when a driver significantly exceeds the speed limit than when only slightly over

it. This pattern reflects a broader and more fundamental insight: the likelihood of detection

is shaped not only by the level of enforcement but also by the severity of the offense. Rec-

ognizing this feedback mechanism is crucial, as it generates rich interactions between law

enforcers and criminals, with significant policy implications. Since law enforcers seek arrests,

and arrests depend on the level of crime, policies aimed at directly reducing crime—such

as harsher penalties—can backfire: by lowering crime levels, they may inadvertently reduce

enforcement intensity, potentially leading to an overall increase in criminal activity.

This paper identifies simple conditions on the detection probability that determine when

policies such as increasing penalties or enhancing detection technologies lead to desirable

crime-reducing outcomes. These results not only help reconcile empirical findings on crime

but also generate new testable predictions. Additionally, the analysis suggests that using

arrests as a proxy for law enforcement intensity may not fully capture feedback effects. The

relationship is more nuanced than often assumed: it is shown that stronger enforcement

incentives may lead to greater effort and yet fewer arrests. As a result, interpreting low

arrest rates as evidence of weak enforcement should be approached with caution.

Beyond policy design, the paper examines the unintended consequences of using performance-

based metrics—such as arrests—to compensate law enforcers. Under decentralized enforce-

ment, these incentives can still be relatively effective, as agents have no impact on aggregate

outcomes. However, when enforcement is centralized, tying compensation to arrests can

backfire as enforcers may strategically reduce overall effort to maximize total arrests.

Finally, this study takes the incentives of potential victims as given, embedding them

within criminals’ expected rewards. A promising direction for future research is to extend

the model to incorporate endogenous victim responses, such as increased vigilance or pri-

vate security. Additionally, the model abstracts away from potential congestion effects in

detecting criminals, which is another avenue for further exploration.
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A Omitted Proofs

A.1 Proof of Lemma 1

Lemma 1 For each σ>0, there exists a unique enforcement level e>0 with E(KS(e), σ)=e.

This enforcement level is maximal, i.e., e = 1, whenever KS(1) ≥ KD(1;σ). Moreover, if

there is σ̄ ∈ [0, 1] solving KS(1) = KD(1; σ̄), then σ̄ is unique and E(KS(1), σ) = 1 for all

σ ≥ σ̄; otherwise, E(KS(e), σ)=e ∈ (0, 1) for all σ > 0.

Proof: The lemma is proved in three steps.

Step 1: The Supply of Crime. First, KS(·) in (7) is continuous, for ω̄(·) is continuous,
by the Maximum Theorem, and G(·) is atomless. It is also strictly increasing, since KS

e (e) =

−g(ω̄)℘e(e,Σ(e)) < 0, by the Envelope Theorem. Finally, KS(e) ∈ (0, 1) for all e ∈ [0, 1].

Step 2: The Demand for Crime. Define κ̄ := c′(1)/[℘e(1, σ)B]. As argued in the main

text, e = E(κ;σ) solves (8) if κ ≤ κ̄; otherwise, E(κ;σ) ≡ 1. Moreover, given σ, E(·;σ) is

continuous by the Implicit Function Theorem. It is also strictly increasing in κ ≤ κ̄, and

thus invertible with inverse KD(·;σ) : [0, 1] → [0, κ̄]; see (9). Finally, notice that KD(0) = 0.

Step 3: Single Crossing. First, if KS(1) ≥ KD(1;σ) = κ̄ then, by Step 2, E(KS(1);σ) =

1, and hence e = 1 solves E(KS(e), σ) = e. This solution is unique since, for any e < 1,

KS(e) > KS(1) ≥ κ̄ and so E(KS(e);σ) = 1. Moreover, if there is σ̄ ∈ [0, 1] solving

KS(1) = KD(1; σ̄), then σ̄ is unique because KD(1;σ) is strictly decreasing in σ; thus, for

any σ > σ̄, KS(1) > KD(1;σ) = κ̄ and hence E(KS(1);σ) = 1.

Finally, suppose KS(1) < KD(1;σ) = κ̄. Then, one can apply the Intermediate Value

Theorem to KS(·) and KD(·;σ) on [0, 1] to secure existence and uniqueness of e ∈ (0, 1) such

that KS(e) = KD(e;σ), as KS(0) > KD(0;σ) = 0 and KD(1;σ) > KS(1). In other words,

E(KS(e), σ)=e ∈ (0, 1). This concludes the proof. □

A.2 Proof of Proposition 1

It suffices to show the existence and uniqueness of a pair (σ∗, e∗) such that σ∗ is optimal

given e∗, and e∗ clears the market given σ∗. For then, crime rate and arrest rate are derived

outcomes: κ∗ = KS(e∗) and α∗ = ℘(e∗, σ∗)κ∗. I next separate into cases depending on the

existence of cutoffs σ̄ and e, which are defined in Section §4.
Case 1: σ̄ exists. Recall that σ̄ is the unique σ value that solves KS(1) = KD(1;σ).

Case 1.1: σ̄ ≤ Σ(1). In this case, KS(1) ≥ KD(1; Σ(1)), and thus, by Lemma 1, enforcement

e∗ = 1 clears the market, given κ∗ = KS(1) and severity σ∗ = Σ(1), while severity and

criminal entry are optimal given e∗ = 1. This equilibrium is unique: if there were another
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one with, say, e′ < 1, then σ̄ ≤ Σ(e′) (as Σ is decreasing) and so, by Lemma 1, the market

clearing enforcement must be maximal e′ = 1 given σ = Σ(e′), which is a contradiction.

Case 1.2: σ̄ > Σ(1). For this case, one can use the Intermediate Value Theorem (IVT).

Indeed, the market clearing locus is characterized by the increasing and continuous curve

e = E(KS(e);σ), while the severity locus is simply the decreasing and continuous curve

σ = Σ(e). To apply IVT, I consider the inverse of Σ, denoted by eΣ : [Σ(1), 1] → [e, 1],

which is well-defined as Σ is strictly decreasing on [e, 1]. Moreover, when σ = 1, eΣ(1) = e

while e = E(KS(e); 1) = 1 > e; on the other hand, when σ = Σ(1), eΣ(Σ(1)) = 1 while

e = E(KS(e); Σ(1)) < 1 by Lemma 1, since Σ(1) < σ̄. Thus, by IVT, there exists a unique

e∗ ∈ (e, 1) such that e∗ = E(KS(e∗); Σ(e∗)). Note that an equilibrium with e ∈ [0, e] cannot

exists, as Σ(e) ≡ 1 on that domain, while e = E(KS(e); 1) = 1 > e.

Case 2: σ̄ does not exist. In this case, E(KS(e);σ) = e ∈ (0, 1) for all σ > 0. If

E(KS(e); 1) = e ≤ e then σ∗ = 1 and e∗ = E(KS(e∗); 1) is an equilibrium. This outcome is

unique: if there is another one with e′ > e then e′ = E(KS(e′); Σ(e′)) ≤ E(KS(e′); 1) ≤ e,

which is a contradiction. Now, if E(KS(e); 1) = e > e then, as previously done, one can

apply IVT to functions eΣ(σ) = e and E(KS(e);σ) = e on the box [Σ(1), 1]× [e, 1]. □

A.3 Proof of Proposition 2

First, twice differentiating (1) yields Πσf = −℘σ(e, σ) < 0. Thus, Π is submodular in (σ, f),

and so By Topkis (1998), the optimal severity locus OS shifts left in (σ, e)-space, as seen in

the middle panel of Figure 4.

Second, I turn to (κ, e)-space. By the Envelope Theorem in (6), ω̄f =−℘(Σ(e; f), σ)<0.

Hence, the supply of crime KS(e; f) shifts left. Since the demand for crime KD is unaffected

by punishment f , the market clearing enforcement falls along the demand curve (see the

left panel of Figure 4). Thus, the market clearing locus MC shifts down. Altogether, the

equilibrium enforcement level e∗ unambiguously falls.

Next, observe that the equilibrium severity σ∗ falls if the MC locus shifts down less

than OS does. Fix σ and log-differentiate in f the market clearing MC locus characterized

by KD(e, σ)≡KS(e; f), and the severity locus OS described by r′(σ)−℘σ(e, σ)f ≡ 0 to get:

de

df

∣∣∣∣
C∗

(
c′′

c′
− ℘ee

℘e

− g

G
ω̄e

)
=

g

G
ω̄f and

de

df

∣∣∣∣
Σ∗

= − ℘σ

℘σef
(13)

Since c′′ > 0 > ℘ee, the slope de/df |MC > −(g/G)ω̄f/[(g/G)ω̄e] = −ω̄f/ω̄e = −℘/(℘ef). On
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the other hand, de/dφ|OS ≤ −℘/(℘ef) if and only if ℘(e, σ) is log-submodular:

de

df

∣∣∣∣
Σ∗

≤ − ℘

℘ef
⇐⇒ ℘σe

℘e

− ℘σ

℘
≤ 0. (14)

Now, I explore changes in the arrest rate. Using (9), let me define

A(e, σ) := ℘(e, σ)KD(e, σ) = c′(e)℘(e, σ)/[℘e(e, σ)B]

Note that A rises in e (since ℘ee≤0<c′′ and ℘e > 0) and in σ (since ℘e/℘ falls in σ as ℘ is

log-submodular in (e, σ)). Thus, the equilibrium arrest rate α∗ = A(e∗, σ∗) falls as f rises.

Finally, I examine the impact on the equilibrium crime rate κ∗. Since an increase in f

leads to less policing e∗ the net effect on κ∗ is unclear. I next show that if ℘ is log-modular,

then the crime rate must fall. Let me define ė := de/df and σ̇ := dσ/df as the total

derivatives of the equilibrium variables (e, σ) with respect to f . Totally log-differentiating

(4) with respect to f yields:

r′′

r′
σ̇ =

℘σe

℘σ

ė+
℘σσ

℘σ

σ̇ +
1

f
=⇒ σ̇

(
r′′

r′
− ℘σσ

℘σ

)
=

℘σe

℘σ

ė+
1

f
.

Since ℘ is log-modular (and thus log-submodular), it follows that σ̇ < 0. Also, r′′ < 0 ≤ ℘σσ,

and so ė > −℘σ/(℘σef). But since ℘ is log-modular, ℘σe/℘σ = ℘e/℘. Hence,

ė > − ℘

℘ef
= − ω̄f

ω̄e

⇐⇒ dω̄

df
= ω̄eė+ ω̄f < 0

Thus, the crime rate κ∗ = G(ω̄) must fall as f rises. This concludes the proof. □

A.4 Proof of Proposition 4

First, I argue that the optimal severity locus OS shifts left. Indeed, fix e and notice that

Σ(e, φ) = argmaxσ Π(σ, e|φ) falls in φ, since Πσφ = −(℘̃σφf + ℘̃φf) = −(℘σf + ℘f) < 0,

namely, Π(·) in (1) is submodular in (σ, φ). Hence, OS must shift left in (σ, e)-space.

Next, I examine the market clearing locusMC. First, the demand for crime KD(e, σ|φ) =
c′(e)/[℘̃e(e, σ|φ)B] decreases in φ, as φ rises the marginal efficacy of e (i.e., ℘̃eφ > 0).

Second, the supply of crime KS(e|φ) = G(ω̄(e|φ)) also decreases in φ, since KS
φ = gω̄φ =

−g℘̃φf = −g℘f < 0. As both demand and supply contract, the effect on the market clearing

enforcement eC(σ|φ) (10) is ambiguous. Clearly, eC(σ|φ) falls in φ if the demand shifts left

less than the supply does, which is the case provided the supply is sufficiently elastic. To
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see this, fix e > 0 and differentiate KS(e|φ) and KD(e, σ|φ) in φ to get:

1

KS

∂KS

∂φ
− 1

KD

∂KD

∂φ
= − g

G
℘̃φf +

℘̃eφ

℘̃e

= − g

G
℘f +

1

φ
(15)

Notice that ∂eC/∂φ ≤ 0 if and only if the right side of (15) is negative. In other words, since

℘̃ ≡ φ℘, it follows that ∂eC/∂φ ≤ 0 ⇐⇒ g(ω̄)/G(ω̄)℘̃f ≥ 1. Thus, if the supply curve is

sufficiently elastic, the market clearing locus MC cannot shift up in (σ, e)-space.

As OS contracts while MC expands, the equilibrium enforcement level e∗ unambiguously

falls. However, the effect on the equilibrium severity σ∗ is more subtle. I next show that the

OS locus shifts down more than MC does, leading to a decrease in the offense severity σ∗.

To this end, fix σ and log-differentiate KS(e|φ) ≡ KD(e, σ|φ) and Σ(e, φ) ≡ σ in φ to get:

de

dφ

∣∣∣∣
MC

(
c′′

c′
− ℘̃ee

℘̃e

− g

G
ω̄e

)
=

g

G
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℘̃e
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de

dφ
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(
℘̃σe

℘̃e

)
= − ℘̃φ

℘̃e

(
℘̃σφ

℘̃φ

)
Using that ℘̃(e, σ|φ) ≡ φ℘(e, σ), the above expression reduces to:

de

dφ

∣∣∣∣
MC

(
c′′

c′
− ℘ee

℘e

+
g

G
φ℘ef

)
= − g

G
℘f + 1 and

de

dφ
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OS

(
℘σe

℘e

)
= − ℘σ

φ℘e

(16)

By assumption, (g/G)℘f ≥ 1. Also, c′′/c′ − ℘ee/℘e > 0, and thus

de/dφ|MC ≥ −(g/G)℘f/[(g/G)φ℘ef ] = −℘/(φ℘e)

On the other hand, ℘σe/℘e ≤ ℘σ/℘, since ℘ is log-submodular in (σ, e). Thus, de/dφ|Σ∗ ≤
−℘/(φ℘e) by (16). Altogether, de/dφ|MC ≥ de/dφ|OS , and so severity σ∗ falls. □

Now the equilibrium arrest rate. Define

A(e, σ, φ) := ℘̃(e, σ|φ)KD(e, σ|φ) = c′(e)℘̃(e, σ|φ)
℘̃e(e, σ|φ)B

Since ℘̃ = φ℘, it follows that A(e, σ, φ) = c′(e)℘(e, σ)/[℘e(e, σ)B]. Thus, α(e, σ, φ) depends

on e, σ only, and because equilibrium e∗ and σ∗ fall as φ rises, it follows that the equilibrium

arrest rate must also fall, since ℘e/℘ falls in e and in σ, as ℘ is increasing and concave in e,

and log-submodular in (e, σ). □

Finally, the equilibrium crime rate. For this comparative static, it is further assumed

that ℘ is log-modular in (e, σ). This is sufficient to ensure that the effect of technology on

criminal entry is not crowded out by a reduction in the level of enforcement.
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Claim A.1 Suppose that ℘ is log-modular in (e, σ). If the detection technology improves

(i.e., φ rises), then the equilibrium crime rate κ∗ falls.

Proof: Let ∆K(e, σ|φ) := KS(e|φ) − KD(e, σ|φ) denote the excess of supply. Notice that

MC locus is determined by ∆K ≡ 0. Totally differentiating ∆K(e, σ|φ) ≡ 0 and Σ(e|φ) ≡ σ

leads to the following 2× 2 system:(
Πσe Πσσ

∆Ke ∆Kσ

)(
eφ

σφ

)
=

(
−Πσφ

−∆Kφ

)
=⇒

(
eφ

σφ

)
= det−1

(
∆Kσ −Πσσ

−∆Ke Πσe

)(
−Πσφ

−∆Kφ

)
(17)

where det ≡ Πσe∆Kσ−Πσσ∆Ke < 0, since ∆Kσ = −KD
σ > 0, by (9), and ∆Ke = KS

e −KD
e <

0, by (7) and (9). Next, notice that, in equilibrium, the crime rate falls if dKS/dφ =

g(ω̄eeφ + ω̄φ) < 0. Since density g is positive, one needs to examine the sign of ω̄eeφ + ω̄φ.

Using the expression for eφ from (17), and doing some straightforward algebra yields:

ω̄eeφ + ω̄φ < 0 ⇐⇒ ∆Kσ(Πσeω̄φ − Πσφω̄e)︸ ︷︷ ︸
(♣)

+Πσσ(∆Kφω̄e −∆Keω̄φ)︸ ︷︷ ︸
(♠)

> 0

Now, observe that KS
φω̄e ≡ KS

e ω̄φ, given (6) and (7). Thus, ∆Kφω̄e − ∆Keω̄φ = KD
e ω̄φ −

KD
φ ω̄e < 0, since KD

e > 0 > KD
φ , ω̄φ, ω̄e. Consequently, (♠) > 0 since Πσσ < 0.

Hence, to show that the crime rate falls, it is enough to show that (♣) ≥ 0. But the latter

reduces to showing that Πσeω̄φ−Πσφω̄e ≥ 0, since ∆Kσ > 0. Now, recall that Πσe = −φ℘σef ;

Πσφ = −℘σf ; ω̄φ = −℘f ; and ω̄e = −φ℘ef . Therefore,

Πσeω̄φ − Πσφω̄e = φf 2(℘σe℘− ℘e℘σ) = 0,

where last equality holds, since ℘ is log-modular in (σ, e). This concludes the proof. □

A.5 Proof of Proposition 5

In this section, the proof of Proposition 5 is finished. As argued in the main text, it remains

to show that the detection probability ℘(e∗, σ∗) falls with B, where σ∗ = Σ(e∗).

To this end, let Σ(e) < 1 and write the first-order condition (4) as r′(Σ(e)) ≡ ℘σ(e,Σ(e))f .

Log-differentiate both sides in e to obtain:

r′′

r′
× Σ′ =

℘σe

℘σ

+
℘σσ

℘σ

× Σ′ =⇒ Σ′ = −℘σe

℘σ

×
(
℘σσ

℘σ

− r′′

r′

)−1
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Next, differentiate ℘(e,Σ(e)) to get:

d℘

de
= ℘e + ℘σ × Σ′ = ℘e − ℘σe ×

(
℘σσ

℘σ

− r′′

r′

)−1

Therefore, it is immediate to see that d℘/de ≤ 0 if and only if (12) holds.

To finalize the proof, I show that if ℘ is log-modular in (e, σ), and ℘ and r are isoelastic in

σ, then (12) holds. First, if ℘ is log-modular, then ℘must be of the form ℘(e, σ) = y(e)×z(σ).

Thus, ℘σe/℘e = ℘σ/℘. In addition, if ℘ is isoelastic in σ, then z is isoelastic in σ and thus

must be proportional to σk, with k ≥ 1, as ℘ must be convex in σ. Similarly, r must be

proportional to σq, with q ∈ (0, 1), as r must be strictly concave in σ. Altogether,

℘σσ

℘σ

− ℘σe

℘e

− r′′

r′
=

℘σσ

℘σ

− ℘σ

℘
− r′′

r′
= − 1

σ
− (q − 1)

σ
= − q

σ
< 0.

This concludes the proof. □

B Convex Penalties

I now explore the case where penalties are allowed to vary with the severity of an offense.

To this end, smoothly index the fine f(σ|φ) so that fφ(σ|φ) > 0, where φ ∈ R. When the

fine f(σ|φ) is log-supermodular in (σ, φ), a rise in φ raises the elasticity of the fine in the

offense severity σ.26 I refer to a greater φ as harsher marginal punishments.

Proposition B.1 (Convex Punishment) If penalties are marginally harsher, then the

enforcement level e∗ falls. The offense severity σ∗ and the arrest rate α∗ fall, both fall,

provided the detection chance ℘(e, σ) is log-submodular in (e, σ). The crime rate κ∗ falls if

the detection chance ℘(e, σ) is modular in ℘(e, σ).

Proof: First, since fφ > 0 and f log-supermodular in (σ, φ), the fine f is supermodu-

lar in (σ, φ), or f ′
φ > 0, by Topkis (1998). Next, twice differentiating (1) yields Πφσ =

−℘σ(e, σ)fφ(σ|φ) − ℘(e, σ)f ′
φ(σ|φ). Thus, Π is submodular in (σ, φ), since f ′

φ > 0. So By

Topkis (1998), the optimal severity locus Σ∗(e|φ) ∈ argmaxσ Π(σ, e|φ) shifts left.
Next, I turn to (κ, e)-space. By the Envelope Theorem in (6), ω̄φ=−℘(e, σ)fφ(σ|φ)<0,

where σ = Σ∗(e). Hence, the supply of crime KS(e|φ) shifts left in φ. Since the demand for

26For instance, this property holds if φ raises the convexity of the fine f in the sense of Arrow-Pratt.
Indeed, a rise in φ is associated with a more convex fine iff the marginal fine f ′(σ|φ) is log-supermodular
(Diamond and Stiglitz, 1974). But then, this implies that the fine f(σ|φ) is log-supermodular in (σ, φ). For
let I(σ, σ′) ≡ 1 if σ′ ≤ σ and 0 otherwise. Since I(σ, σ′) is log-supermodular in (σ, σ′), the function I(·)f ′(·)
is log-supermodular in (σ, σ′, φ); and thus, f(σ|φ) =

∫∞
0

I(σ, σ′)f ′(σ′|φ)dσ′ is log-supermodular in (σ, φ),
since log-supermodularity is preserved under integration.
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crime KD is constant in φ, the market clearing enforcement falls along the demand curve;

thus, the market clearing locus MC shifts down. Thus, enforcement e∗ unambiguously falls.

Next, observe that the equilibrium severity σ falls if the MC locus shifts down less

than OS, which is the case here. Indeed, fix σ and log-differentiate the market clearing MC
locus KD(e, σ)≡KS(e|φ), and the severity OS locus r′(σ)≡℘σ(e, σ)f(σ|φ)− ℘(e, σ)f ′(σ|φ)
to get:

de

dφ

∣∣∣∣
MC

(
c′′

c′
− ℘ee

℘e

− g

G
ω̄′
)

=
g

G
ω̄φ and

de

dφ

∣∣∣∣
OS

(
℘σe

℘e

+
f ′

f

)
= −℘fφ

℘ef

(
℘σ

℘
+

f ′
φ

fφ

)
(18)

Since c′′ > 0 > ℘ee, the slope de/dφ|MC > −(g/G)ω̄φ/[(g/G)ω̄′] = −ω̄φ/ω̄
′ = −℘fφ/(℘ef).

Thus, de/dφ|MC > −℘fφ/(℘ef). By looking at de/dφ|OS in (18), a sufficient condition to

ensure that the equilibrium severity falls is:

℘σ

℘
+

f ′
φ

fφ
≥ ℘σe

℘e

+
f ′

f
⇐⇒

f ′
φ

fφ
− f ′

f
≥ ℘σe

℘e

− ℘σ

℘
(19)

For then de/dφ|OS ≤ −℘fφ/(℘ef) < de/dφ|MC. Notice that (19) holds, since ℘(e, σ) is log-

submodular—and so the right side of the right expression in (19) is negative—and f(σ|φ) is
log-supermodular—and so the left side of the right expression in (19) is positive.

Now, let us explore changes in the arrest rate. Slightly abusing notation, let α(e, σ) ≡
℘(e, σ)KD(e, σ) = c′(e)℘(e, σ)/[℘e(e, σ|φ)B]. Note that α rises in e (for ℘ee < 0 < c′′) and

in σ (for ℘e/℘ falls in σ). Thus, α(e(φ), σ(φ)) falls as φ rises, since e′(φ), σ′(φ) < 0.

The effects on the crime rate are more difficult to generalize to the case of convex penal-

ties. However, if ℘ is modular then ℘eσ = 0. In such case, the demand curve KD in (9) is

unaffected by the offense severity, and thus, the demand KD falls in φ, since the enforcement

level falls in φ. As a result, the crime rate κ = KD(e|σ) falls in φ. □
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