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Abstract

We develop a model in which the prevalence and sharing of misinformation endoge-

nously arise from the interaction between (i) users’ decisions to verify and share news

of unknown truthfulness and (ii) producers’ choices to generate fake content. We use

the model to examine how policies intended to combat misinformation affect users’

incentives to engage in costly news verification. Via this channel, unintended effects

may emerge from: lowering verification costs borne by users; disrupting the supply of

fake content; and introducing imperfect filters. We provide sensitivity measures, akin

to demand elasticities, to evaluate these effects, and make predictions about market

outcomes based on observable characteristics such as users’ age and popularity, as well

as deeper parameters such as users’ gains and losses of sharing news.

∗An earlier version of this paper was titled “Fake News in Social Media: A Supply and Demand Ap-
proach.” Cisternas: Federal Reserve Bank of New York, gonzalo.cisternas@ny.frb.org. Vásquez: Smith
College, Department of Economics, jvasquez@smith.edu. We thank Marco Cipriani, Steven Durlauf, An-
drew Haughwout, Nathan Kaplan, Jorge Lemus, Jonathan McCarthy, Lones Smith, Marek Weretka, and
Juanjuan Zhang for their useful comments and conversations, and Orrie Page for his excellent research assis-
tance. The views expressed in this paper are those of the authors and do not necessarily reflect the position
of the Federal Reserve Bank of New York or the Federal Reserve System.

1



1 Introduction

The spread of misinformation online has recently gained substantial prominence. Its threats

to societies are real—potentially affecting elections, markets, and disease spread1—and un-

likely to disappear without action.2 Social media platforms have therefore responded to the

issue, taking important steps in at least three domains. First, in the area of fact-checking:

platforms have promoted professional and independent verification of news, which has re-

sulted in the advent of a network of third-party fact-checkers who verify the accuracy of

content.3 Second, in the area of fake content visibility: to weaken the incentives of fake new

producers, news items that have been confirmed to be false are given less relevance, and re-

peated offenders are removed from platforms.4 Third, in technology, such as the deployment

of algorithms designed to detect misinformation.5

Underlying this comprehensive response, however, is the principle that it is users them-

selves who must both assess the veracity of each news item and ultimately decide how to

act upon it. To empower users, therefore, suspicious content is now accompanied by fact-

checkers’ reports or related material that provides context to users.6 The success of the

aforementioned policy responses then rests on users’ willingness to verify evidence on the

news items encountered. However, such verification process is naturally a costly activity,

even if the evidence is readily available.

This paper introduces a flexible model of misinformation that can be used to address a

variety of questions regarding the fake news problem. For instance, how impactful is the

appearance of fact-checking initiatives that facilitate news verification by users? How are key

variables such as the prevalence and diffusion of fake news altered by policies that attempt

to disrupt their production? How effective are algorithmic filters that detect fake content

before it reaches a platform’s users? The distinctive aspect of our work is that we focus

on examining how users’ incentives to verify news vary with the introduction, or change in

1Allcott and Gentzkow (2017) estimate that 760 million interactions with fake news occurred on the web
around the 2016 U.S. presidential election, while Guess et al. (2020b) show that online platforms facilitated
traffic to untrustworthy websites. See Rapoza (2017) for an incident of the stock market’s reaction to fake
news, and DiResta and Garcia-Camargo (2020) for falsehoods regarding the COVID-19 pandemic.

2The World Economic Forum has labeled the fake news problem as a major global risk (Howell, 2013),
and it highlights the use of artificial intelligence in the production of “deepfake” videos as a major long-term
threat (World Economic Forum, 2020).

3Some platforms partner with fact-checking organizations that adhere to the International Fact-checking
Code of Principles: https://www.ifcncodeofprinciples.poynter.org.

4See Meta Business Help Center (2022). Some organizations are also rating websites’ trustworthiness,
which ultimately influences the latter’s advertising revenue, e.g., https://disinformationindex.org/.

5See, e.g., https://ai.facebook.com/blog/heres-how-were-using-ai-to-help-detect-misinfor
mation/.

6Lyons (2017) argues that this approach lowers sharing behavior more than merely labeling news as false.
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the intensity, of any of these policies—through this approach, we uncover some unintended

risks that may arise, and we inform on the type of data and elasticity measures that can be

gathered to better design interventions.

Model and equilibrium. In our model, a platform is a venue on which users encounter

news that can be true or false. Upon contact with a news item, a user can first choose to

learn its veracity at a cost and then decide whether to share it. Importantly, users differ

in their benefits and losses from sharing news but share a commonality: they experience

gains from sharing true news and suffer losses from sharing fake content. These assumptions

have two implications. First, because verification reveals the truthfulness of each news item,

and users dislike sharing fake content, fake news can be shared only by users who do not

verify. Second, from an incentives viewpoint, verifying news entails incurring in an upfront

payment that must be weighed against the ex-post loss of sharing fake content with some

chance—those engaging in such unverified sharing decide to skip the former cost.

The chance that a news article is false is given by the endogenous proportion of them

among the total entering the platform. When such fake news prevalence rises, fewer users

share news articles without verifying; hence, a decreasing misinformation pass-through curve

emerges, linking prevalence levels to the mass of users engaged in unverified sharing behavior.

Conversely, the pass-through rate of misinformation increases as the proportion of these users

increases, incentivizing the production of fake content; thus, an increasing supply of fake

news ensues. Much like in traditional markets, an equilibrium in this market emerges when

these two curves intersect, delivering an equilibrium prevalence and pass-through rate of

misinformation. Equipped with this tractable characterization, we can examine how current

interventions affect outcomes in this induced market for news.

Overview of the results. As a first step, we study the introduction of fact-checking

services (Section 4). This policy effectively reduces the verification costs borne by users,

ultimately affecting equilibrium outcomes through its impact on the pass-through curve.

Users, however, will engage in verification only when their expected losses are high. As a

result, lowering such costs does not act as a usual “demand shifter,” ensuring a strict inward

shift in the pass-through curve. Put differently, users’ incentives are at the heart of rigidities

in the misinformation pass-through curve that may result in equilibrium outcomes remaining

unchanged—studying the nature of these rigidities becomes of central importance.

Specifically, we derive conditions on primitives (benefits and losses) such that lowering

verification costs effectively induces more users to verify news, yet the pass-through curve is

nowhere affected. Indeed, such lower costs may induce verification—and hence sharing—only

by users who were not originally sharing content, leaving the behavior of those already doing
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unverified sharing unchanged. At the other extreme, we find conditions for a strong form of

sensitivity of the pass-through curve in the following sense: lowering the aforementioned costs

always triggers verification first on those engaging in unverified sharing. We argue that our

first set of conditions is most appropriate when we consider an “inter-cohort” interpretation

of the model: users vary in their age, with each user type encoding an average “popularity”

of the cohort in practice. The prediction is that most verification comes from younger users

who where originally cautious of sharing news, and little from older users doing unverified

sharing, so equilibrium outcomes can be unaffected. In turn, our second set of conditions

are most appropriate under an “intra-cohort” interpretation: users of a given age who vary

in their popularity, with more popular types exhibiting more propensity to share news.

As verification is feasible, those users can be more prone to verify content to avoid large

reputational losses, so the policy has the potential to affect outcomes at the outset.

Motivated by the use of policies that weaken the incentives to produce fake news, in

Section 5 we examine supply effects, which we model as an inward shift of the supply curve

at all possible levels. In this situation, while fake news prevalence decreases after the shift

occurs, the equilibrium pass-through rate increases through two channels: some users cease

verifying news, and others who were not originally sharing content begin to share without

verifying. We provide conditions such that, through either of these channels, the pass-

through curve is sufficiently elastic so that the diffusion rate of fake news—prevalence times

pass-through—increases after a reduction in prevalence; in other words, misinformation is

more profusely diffused after the intervention. Equally important, we also provide conditions

under which a reduction in verification costs results in a more elastic pass-through curve,

highlighting circumstances under which joint policies can negatively reinforce one another.

In Section 6, we examine the use of detection algorithms. We focus on an algorithm that:

(i) assesses news articles before these reach users, removing content if deemed fake, and (ii)

makes type-II errors—mistakenly labeling a false article as truthful. In this context, we

show that introducing such a filter can increase not only the diffusion of misinformation (as

it happened under supply effects), but also its prevalence. Indeed, by affecting the inference

made by users when they receive news, such filters can induce more unverified sharing, which

can outweigh the benefit that a filter has on weakening producers’ incentives via limiting

the pass-through of fake news. Further, we provide conditions that guarantee a sufficiently

elastic relaxation of users’ incentives—those originally either verifying news or refraining

from sharing unverified content—that underlies our finding.

The paper concludes with two extensions. First, in Section 7.1 we examine market power

by considering the case of a single news producer that inherits the cost structure of the

“competitive” case. Traditional market power would then consist of reducing “trade”—in
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our case, fake news prevalence—to obtain a larger per-unit revenue—pass-through in our

model. However, the monopolist does not control users’ sharing decisions directly, and

fake news prevalence is in general not observed by users; under these conditions, the only

sequentially rational outcome is the competitive equilibrium. That said, a mild enrichment

of the monopolist’s toolbox can improve profits: if he can both segment the market trivially

(i.e., target sub-populations that differ from the original one only in their size) and also

supply truthful content, then the monopolist can achieve prevalance-pass-through rate pairs

that dominate the competitive outcome. We also show how this technique can be profitable

when lowering verification costs creates convexities in the misinformation pass-through curve.

Second, in Section 7.2, we examine network externalities, understood as individual choices

depending on the aggregate choices of others—a central element in the success or failure of

platforms. There, we show that the misinformation pass-through curve can in fact become a

correspondence. Consequently, supply reductions as in Section 5 can lead not only to more

diffusion and greater prevalence, but they can also refine the set of equilibria to a single

outcome that is worse than the original one.

Applied relevance. From an institutional viewpoint, our model rests on three assump-

tions. First, the production of fake content increases with sharing rates. Indeed, whether

ideologically or profit-driven, clicks are the main source of profitability for untrustworthy

websites in the online market for fake news (e.g., Allcott and Gentzkow, 2017 and Tucker

et al., 2018); with more sharing, however, more users can be reached, and the likelihood of

more clicks increases. In fact, the mere emergence of social media platforms represents an

increase in sharing ability on par with an increase in the severity of the fake news problem.

Second, we chose a set-up in which users find it beneficial to share truthful content and

dislike sharing misinformation. From a modeling perspective, this assumption intentionally

reduces the chances that misinformation will be transmitted. But it is consistent with

evidence on users finding it important to share only accurate news (Pennycook et al., 2021),

and worrying about their reputations when fake news is shared (Altay et al., 2022).

Third, users bear costs to verify the information they encounter. Indeed, while the growth

in fact-checking outlets worldwide7 lowers search costs for users, it does not necessarily elim-

inate verification costs: to make an informed decision, users must review reports whether

searching independently at specialized sites,8 or accessing them as part of contextual infor-

mation freely provided by platforms.

That said, our model abstracts from two elements that are seen as important in practice.

7Fact-checking sites have grown from 44 in 2014 to almost 300 by 2020 (Stencel and Luther, 2020).
8See, for instance, https://snopes.com or https://politifact.com.
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First, news may have an ideological bent—i.e., a form of horizontal differentiation—with

users potentially favoring certain types of news over others. Second, users may belong

to social networks, and so they can get information from individuals they have chosen to

“follow.” One would expect, however, that verification incentives are weaker when biases

are at play and/or news articles come from trusted sources. Not only that, these features

may obscure policies’ limitations that stem from incentives considerations exclusively, such

as the types of rigidities that we uncover in Section 4. Since our goal is to focus on such

incentives, we explicitly choose a setting in which (i) rational users encounter news that differ

only along a “vertical” true/false dimension and (ii) encounters are random. At the end of

Section 2 we also argue why the model is still meaningful from a positive standpoint despite

not explicitly modeling these elements, especially if the goal is to study two-sided markets.

In summary, the recent actions taken to combat misinformation reinforce the idea that

news verification is central to this issue. From this perspective, our model allows us to:

provide concrete elasticity measures—akin to “demand elasticities”—to evaluate policy in-

terventions; connect these measures to conditions on both primitives and equilibrium objects;

and make predictions regarding market outcomes once controlling for observable user char-

acteristics such as popularity and age. Provided sufficient data is gathered, our results could

in principle be tested empirically.

Related literature Our paper is most closely related to studies whose main goal has

been to assess the efficacy of policies intended to mitigate the fake news problem. Regarding

fact-checking, Henry et al. (2022) document in experiments that users who are more prone

to sharing news articles are also more prone to verifying them, which is consistent with

our “popularity” specification. Regarding news inspection, Pennycook et al. (2020) show,

also through experiments, that labeling only a subset of false news articles leads users to

believe that untagged articles are more accurate, which positively influences the sharing

of the latter; a similar phenomenon arises when an algorithmic filter is in place in our

model. Finally, regarding policies aimed at limiting the sharing of misinformation, Ershov

and Morales (2021) empirically examine the impact that increasing users’ costs of sharing

news has on the transmission of content from highly trustworthy outlets relative to news

from less trustworthy counterparts; by contrast, we examine how interventions that would

reduce the supply of fake content can lead to more sharing and diffusion of misinformation.

Our paper also belongs to a growing body of theoretical papers examining various aspects

of the fake news problem. In a fully dynamic setting, Papanastasiou (2020) allows users

to uncover the veracity of a piece of news upon paying a cost, but the main focus is on

examining a platform’s decision to engage in costly verification when fake-news cascades
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harm the platform; by contrast, we focus both on how users’ incentives to inspect news

vary with changes in the underlying heterogeneity and, by virtue of examining a two-sided

market, on how supply forces respond to policy interventions. Costly verification also appears

Cheng and Hsiaw (2022), where it is shown that misinformation and belief disagreement can

persist in the long run when news items repeatedly come from a privately informed sender.

Abstracting from verification incentives, Acemoglu et al. (2022) develop a model in which

users have heterogeneous priors about an unknown state, and find that homophily introduces

a trade-off between virality and the emergence of eco chambers.

To conclude, our model also contributes to the matching literature, in settings in which

individuals choose to protect themselves at a cost from harm with endogenous intensity

(e.g., Quercioli and Smith, 2015 and Vásquez, 2022). Two observations are useful in this

regard. First, we do this in the context of social media, and where utility is non-transferable,

thus complementing a recent literature on platforms that allows for transfers and potential

network externalities (e.g., Biglaiser and Crémer, 2020 and Biglaiser et al., 2022). Second,

our analysis of segmentation strategies entails the choice of allocating an “average quality”

to (i) identical sub-populations, (ii) when prices are absent, and (iii) when consumers do not

know the quality of the good at hand—this is in great contrast with recent treatments of

market segmentation in traditional product markets (e.g., Bergemann et al., 2015)

2 Model

We develop a model of a platform on which a large number of users encounter fake content

that originates from a large number of fake news producers. We introduce the main elements

of the model first, and then discuss how to interpret the latter at the end of the section.

News viewers. A unit mass of infinitesimal risk neutral users have access to an online

platform on which they encounter “uncertified” news articles, i.e., news articles for which

truthfulness cannot be determined upon first contact (e.g., by reading the headline, the

originating website, or even the whole article). These encounters are random from the

perspective of all platform participants in that the likelihood of encountering false news is

identical across users and solely determined by the proportion of fake news circulating in the

platform. Upon encountering a news item, each user can decide to determine its veracity by

paying a fixed cost t ≥ 0; for instance, the search costs incurred when consulting specialized

websites for fact checks, the time costs associated with reviewing related articles presented

as part of “contextual information,” or even attention costs.

After the verification decision is made, users can decide to share the news item. Not
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sharing yields a payoff of zero. The payoff of sharing nonetheless depends on the veracity of

the news item, and it varies across users. Specifically, we assume that users are heterogeneous

according to a characteristic v—or type—taking values in [0, v̄], such that sharing truthful

news yields a benefit b(v), while sharing fake news entails a loss ℓ(v). The functions b(·) and
ℓ(·) are continuous in [0, v̄], and strictly positive almost everywhere (a.e.) in the interval. The

underlying characteristic v is distributed according to an atomless cumulative distribution

function (CDF) G(·), with support [0, v̄] and density g(·) which is differentiable.

Fake news producers. We assume that there is a fixed mass of uncertified news entering

the platform, which we set at a level equal to 1. Among this mass, a proportion π ∈ [0, 1]

is false. We refer to π as the fake news prevalence. This news type originates from a pool

of potential fake news producers, each facing the choice of producing a fake news article

upon paying an opportunity cost c ∈ [0, 1], or not producing at all (which yields zero); these

costs vary across producers according to an atomless CDF F (·) with support [0, 1] and a

differentiable density f(·). Fake news producers then receive a payoff of 1 when a news item

is shared, and 0 otherwise. Thus, the expected revenue for any producer is given simply by

the probability with which a fake news item is ultimately shared. We refer to this probability

as the pass-through rate of misinformation, and we denote it by σ ∈ [0, 1].

We note that while our choice to fix the volume of uncertified news implies that increases

in the mass of fake news production necessarily crowd out truthful content entering the plat-

form and vice-versa, this assumption is inconsequential for our analysis: what we require is

that fake news production is increasing in its pass-through rate, which operationally trans-

lates to an increasing supply curve of misinformation. Also, note that since users dislike

passing on fake content and the verification technology is perfect, misinformation is shared

only when it is not verified.9 Thus, the fake news pass-through rate coincides with the mass

of users who engage in unverified sharing.

Information and equilibrium concept. The pair (π, σ) is determined by forces akin

to supply and demand as we explain in the next section. Importantly, neither users nor

producers directly observe these endogenous variables, as it happens in practice; rather, all

platform participants correctly anticipate the values that π and σ take in equilibrium. The

model is “competitive” in that all platform participants are assumed to take (π, σ) as given.

Definition 1 (Equilibrium). An equilibrium consists of a prevalence π∗ and a pass-through

rate σ∗ such that: (i) given prevalence π∗, sharing and verification choices are optimal for

all users, and (ii) given σ∗, potential fake news producers’ choices are optimal.

9Section 6 introduces a second layer of verification, albeit imperfect and in the form of a technology
reminiscent of an “algorithmic filter.”
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Interpretation of the model. Let us conclude this section by briefly discussing how to

interpret the model and some of our modeling choices.

1. User types and preferences. The general specification for gains and losses permits two

interpretations of our population of users that are relevant in practice. First, v is a

measure of within-cohort popularity : users correspond to individuals of a specific age

(and potentially other observable characteristics—see next point) who in turn vary in

terms of their popularity (e.g., number of followers). Naturally, we expect b to be

increasing across types, but losses can be increasing too: reputational costs may grow

as popularity increases. Second, v captures age: each type in our model is a (e.g.,

popularity) average of a different cohort of users in practice. We can then expect both

b and ℓ to be decreasing across types: if average visibility decreases with age, so can

the benefits and losses of sharing news. Crucially, as we will demonstrate in Section

4, these two interpretations are not necessarily isomorphic via a simple reordering of

types; in fact, there can be important qualitative differences in the ways through which

policies induce verification of news by users in both cases (Propositions 2 and 3).

2. Matching technology. The fact that the chance of encountering fake content is solely de-

termined by the relative abundance of the latter implies that the matching technology

is effectively random. But in reality, users’ encounters with news are not completely

accidental: as argued, users may rely on their networks, or they may exhibit biases that

favor certain types of news (horizontal aspect). Allowing for randomness is neverthe-

less appropriate from a two-sided market perspective—i.e., producers of fake content

interacting with consumers of news—because it reflects fake news producers’ imper-

fect reach when targeting individuals of interest. In turn, this can happen because

platforms offer an imperfect degree of targeting granularity in practice, or because

algorithms mediate matches using information not possessed by news producers.

From this perspective, suppose that the population of interest is characterized by a

common ideological position. In addition, fake news producers specialize in generating

misinformation about actions by representatives of the other side of the ideological

spectrum. Then, the news articles effectively share an element of homogeneity (e.g.,

‘news about the opposite ideology’), ultimately making the vertical true/false dimen-

sion the main source of differentiation. In this “partial equilibrium” context, as long as

there is some residual uncertainty regarding users’ popularity or age, perfectly chan-

neling news through those who will easily pass it on is not possible—producers need

to evaluate the non-trivial chance of reaching users who engage in unverified sharing.

9



3. Static nature. The model is static in that users share news (at most) once—but fake

news diffusion clearly is a dynamic phenomenon. While clearly a simplification, this

assumption reflects a situation in which the sharing decisions of individuals who en-

counter fake news early on happen to be good predictors of the overall diffusion of

fake content. There are reasons to believe this is the case. First, news items arrive

frequently to platforms: as new cohorts of news are placed more prominently in users’

news feeds, the subsequent sharing rate of old cohorts can be limited, thereby mak-

ing the initial sharing rates the most relevant for producers’ payoffs. Second, dynamic

complementarities are at play: if news that are shared more diffusely early on are given

more prominence and vice-versa, initial sharing rates can determine the fate of a piece

of news. Third, producers have some targeting power: news are likely to be directed

to users perceived as good entry points.10

3 Unverified Sharing and Equilibrium Prevalence

Sharing misinformation. Consider the set of users who choose to skip verification and

share news for each prevalence level π and verification cost t. This set is a subset of the users

who find it optimal to share when verification is unavailable, or prohibitively costly (e.g.,

t = +∞). Indeed, by revealed preferences, for any user who does not share in this latter case,

sharing without verifying remains dominated when the possibility of verification is added.

To this end, imagine for a moment that verification is unavailable. Fixing prevalence π,

type v will decide to share provided

(1− π)b(v)− πℓ(v) ≥ 0,

where we have assumed that ties are broken in favor of sharing. Rearranging the above

expression, we see that sharing is optimal if

b(v)/ℓ(v)

1 + b(v)/ℓ(v)
≥ π, (1)

or when types v have a large enough propensity to share news (left-hand side of (1)).

If the platform introduces a costly verification technology, types v satisfying (1) will trade

off paying the verification cost t and saving the loss ℓ from sharing misinformation versus en-

gaging in unverified sharing. Critically, since costly verification is naturally paid irrespective

10Grinberg et al. (2019) show that fake news sharing has been concentrated among older people, while
Guess et al. (2019) that age is its main predictor even after controlling for partisanship and ideology.
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of the verification outcome, unverified sharing dominates verified sharing whenever

(1− π)b(v)− πℓ(v) > (1− π)b(v)− t,

(i.e., when sharing, we break ties in favor of verifying news). Thus, unverified sharing

happens for types v with sufficiently high propensity to skip verification t/ℓ(v), i.e.,

t/ℓ(v) > π. (2)

Altogether, given prevalence π and verification cost t, the set of users U(π; t) who share

unverified news articles are those whose type v satisfies inequalities (1) and (2), namely:

U(π; t) ≡ {v ∈ [0, v̄] : φ(v; t) ≥ π} , where φ(v; t) ≡ min

{
b(v)/ℓ(v)

1 + b(v)/ℓ(v)
,
t

ℓ(v)

}
. (3)

We can now state a central study object: the misinformation pass-through curve, which

maps prevalence levels to the mass of users sharing unverified content:

Σ(π; t) ≡
∫
U(π;t)

dG(v). (4)

By definition of (3), the correspondence π 7→ U(π; t) is weakly decreasing in the sense

of set inclusion. Thus, the pass-through curve is non-increasing, reflecting that as fake news

become more prevalent, fewer users share news articles without verifying them. In addition,

if the production of fake news vanishes, all users share news articles without verifying (i.e.,

U(0; t) = [0, v̄]) as sharing ceases to have a downside, i.e., Σ(0; t) = 1. Moreover, because

ℓ > 0 a.e., the set of users who share news has measure zero if only fake news articles circulate.

Thus, Σ(1; t) = 0 with Σ possibly vanishing strictly before 1 in some specifications.

Remark 1. For fake news, distinguishing between the “pass-through rate” (σ) and the

“pass-through curve” (Σ) is appropriate not only because of their dimensionality (scalar vs.

function) but also because both notions may differ in more general specifications, such as

when we study the use of internal filters in Section 6.

We focus on the case in which Σ is continuous. While this is largely for convenience—

i.e., it avoids qualifying our results to ensure that an equilibrium exists—it is also natural.

Specifically, it rules out the possibility of marginal reductions in perceived prevalence π

prompting a large number of users to become active in unverified sharing at arbitrary levels

of prevalence. The next result outlines conditions that ensure continuity of Σ.
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Lemma 1. If φ(·; t) is differentiable a.e. with |φ′(·; t)| > 0 a.e, then Σ is continuous.

That is, provided φ(·; t) does not fluctuate too wildly or exhibit flat regions, small changes

in the environment do not have large effects in the aggregate. Otherwise, φ can take any

form, allowing for kinks that can appear naturally due to the presence of a minimum. We

assume the continuity of the pass-through curve Σ in the rest of this paper.

Producing Fake News. We now turn to the supply of fake news entering the platform.

Given a pass-through rate of misinformation σ, a fake news producer with cost c chooses

to produce if and only if σ ≥ c. Thus, the supply of fake news, i.e., the function that maps

pass-through rates σ to prevalence levels, is given simply by

Π(σ) ≡ F (σ). (5)

Due to the properties of the distribution F (·), the supply Π(·) is continuous, satisfies Π(0) = 0

and Π(1) = 1, and is non-decreasing. In other words, more fake content is generated when

the pass-through rate increases, as the platform becomes more attractive for producers.

Remark 2. As argued in Section 2, normalizing the mass of news to 1 is without loss: all

our qualitative results go through as long as the supply of fake content is increasing. Also,

as in Remark 1, distinguishing between “prevalence” and “supply” is justified because they

need not coincide in other specifications (e.g., when the total mass of news articles exceeds 1).

Altogether, a tuple (π∗, σ∗) constitutes an equilibrium of this economy if and only if

σ∗ = Σ(π∗; t) and π∗ = Π(σ∗). Our assumptions guarantee the following result:

Proposition 1. There exists a unique equilibrium (π∗, σ∗).

Much like in a standard supply and demand framework, the opposing forces behind an in-

creasing supply of fake news and a decreasing misinformation pass-through curve ensure the

existence of a unique pair (π∗, σ∗) that balances this “market for misinformation.” Econom-

ically, therefore, the model rests ultimately on two natural assumptions: unverified sharing

behavior decreases as fake news articles become more abundant, and the supply of fake news

articles increases along with the pass-through rate.

In the following sections, we leverage the model structure to illuminate a number of issues

related to the fake news problem. To obtain sharp economic insights, we make and maintain

the following assumption.

Assumption 1. The benefit function v 7→ b(v) and loss function v 7→ ℓ(v) are strictly

monotone, while their ratio v 7→ b(v)/ℓ(v) is strictly increasing.
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A strictly increasing ratio of benefits to losses captures that higher types exhibit a stronger

propensity to share news—ordering types v in this way clearly imposes minimal structure

on the problem. Equipped with this ranking of types, it suffices to assume that benefits b

and losses ℓ are monotone to illustrate the key insights of the model.

4 Facilitating Verification by Users

To combat fake news, social media platforms have begun to offer more and better fact-

checking services to users, while still allowing them to decide whether to share. These

services can be seen as a decrease in the verification costs t that users face. Importantly,

fully eliminating these costs may be infeasible: even if evidence is readily available, verifying

information is a costly activity. Hence, in what follows we focus on reductions in verification

costs with t remaining strictly positive.

Such reductions have the potential to affect outcomes via their impact on the pass-

through curve Σ(π; t): if verification is less costly, the extent of unverified sharing can fall,

manifested in a contraction of Σ(π; t). However, as Figure 1 demonstrates, the associated

contractions are, generically, only partial (from π = 0.4 onward in Figure 1). Hence, whether

or not outcomes are affected depends on where the equilibrium lies via the location of the

supply curve; see Figure 1. Thus, as a first observation, while Σ(π; t) mimics a traditional

demand function (it is decreasing in the quantity of the good of interest, π, and it determines

the revenue for producers) reductions in t do not act as a demand shifter that guarantees a

strict inward shift at all levels of prevalence, and hence a drop in the equilibrium prevalence

π∗. This trait of the pass-through curve suggests an inherent lack of sensitivity to reductions

in verification costs, ultimately impacting the effectiveness of fact-checking policies.

Figure 1: Parameter values: v̄ = 1, G(v) = v, b(v) = 4v1.8, and ℓ(v) = v. Verification cost
t ∈ {0.4, 0.8}. The upward sloping curves represent two hypothetical misinformation supplies (5),
namely, Π(σ) = σ2 and Π(σ) = 0.36σ2.
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The remainder of this section is devoted to more deeply examining this issue of sensitivity

of Σ to changes in t. At the core of our analysis lies the possibility that the choice to verify

news segments users into three sets: users who engage in unverified sharing (U); who verify

and share (V); and who simply do not share (N). We establish conditions under which

lowering verification costs t implies a transfer of users from U to V, effectively leading

to a (partial) contraction of the pass-through curve Σ. But we also state conditions that

lead to a transfer of users from N to V exclusively, implying that although the policy does

indeed induce more circulation of verified content, the amount of misinformation sharing

is unchanged. Consequently, lack of sensitivity to reductions in verification costs need not

occur only for low levels of prevalence, where it is difficult to incentivize verification due to

the low chances of encountering misinformation—it can also arise at higher prevalence levels

if “entry” by those not originally sharing takes place.11

4.1 Increasing benefits

Suppose that b(·) is strictly increasing. As we show below, in this case the pass-through

curve Σ exhibits a strong sensitivity to verification costs in the following sense: for each level

of prevalence π, entry to the (verified) sharing world (N → V transfer) cannot occur before

the pass-through curve Σ contracts at that point (U → V transfer). If the opposite occurs

(Section 4.2), we say that the pass-through curve has weak sensitivity to the same variable.

As a first step, we need to construct π 7→ Σ(π; t) for each π given t. To this end, recall

that the set of users engaging in unverified sharing U(π; t) (dependence on π and t is now

made explicit) is determined by the π-superlevel set of φ defined in (3), i.e., those types v

for whom

φ(v; t) = min

{
b(v)/ℓ(v)

1 + b(v)/ℓ(v)
,
t

ℓ(v)

}
≥ π.

To illustrate, suppose that loss ℓ(·) is strictly increasing, and consider Figure 2 below.

The left panel depicts an increasing propensity to share function b/ℓ/(1 + b/ℓ) as well

as two decreasing propensity to skip verification functions t1/ℓ and t2/ℓ with t1 > t2. For

values of t > t1, no one engages in verification, as φ ≡ b/ℓ/(1 + b/ℓ). Further, for levels of

prevalence π > 0.8, no one shares news as φ < 0.8 a.e.; in the right panel, therefore, the

pass-through curve Σ(·; t) for t > t1 in red dots vanishes from prevalence π = 0.8 onward.

As verification cost t begins to fall, high types v find it profitable to start verifying news,

provided prevalence π is sufficiently high. Indeed, consider t2/ℓ(v) in Figure 2. Notice that

φ(·; t2) in (3) is hump-shaped, and thus φ(v; t2) ≡ t2/ℓ(v) for all types v ≥ argmaxv φ(v; t2).

11Recall that, by revealed preferences, users switching from N to U is, for all π, not possible when t falls.
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Figure 2: Parameters as in Figure 1: v̄ = 1, G(v) = v, b(v) = 4v1.8, ℓ(v) = v, t1 = 0.8 and t2 = 0.4.

Consequently, if prevalence π > 0.7, no one engages in unverified sharing (as φ < 0.7 a.e.); if

prevalence π ∈ [0.4, 0.7), types beyond a threshold (soon defined) begin verifying news; and

if prevalence π < 0.4, no user doing unverified sharing has incentives to change her behavior

(since φ ≡ b/ℓ/(1+ b/ℓ) for low prevalence). In the right panel, the new pass-through curve,

Σ(π; t2), is depicted in dashed blue. Observe that it exhibits a non-trivial contraction for

mid prevalence (π ∈ [0.4, 0.7]) and it vanishes for high enough prevalence (π ≥ 0.7).

In this case of increasing losses, therefore, the types that are more prone to sharing

news articles (i.e., high types) are also those more inclined to verify them. Thus, the types

engaging in unverified sharing must be in the mid range. Formally, for each prevalence

π ∈ [0, 1], the set of users doing unverified sharing is of the form U = [v0(π), v1(π; t)), where

v0(π) ≡ inf

{
v ∈ [0, v̄] :

b(v)/ℓ(v)

1 + b(v)/ℓ(v)
≥ π

}
and v1(π; t) ≡ inf

{
v ∈ [0, v̄] :

t

ℓ(v)
≤ π

}
(6)

(with the convention v0(π) = v̄ and v1(π; t) = v̄ if their respective sets are empty.12) In

particular, if U and V are non-empty, then a small reduction in verification costs t strictly

lowers v1(π; t) but leaves v0(π) unaffected, effectively implying that high types switch from

sharing unverified news U to sharing verified information V.

This brings us to the notion of sensitivity introduced earlier. Refer again to Figure 2,

and consider π = 0.4 in the figure. In this case N = [0, v0(π)), and mildly reducing t from

12Clearly, these threshold types are unique because each corresponds to the generalized inverse of a mono-
tone function. When interior, v0(π) is the user type who is indifferent between sharing news without verifying
and not sharing, while v1(π; t) is the user type who is indifferent between verified and unverified news shar-
ing. The left panel of Figure 2 depicts these thresholds types for prevalence π = 0.4. Finally, if losses ℓ are
decreasing, then type v1(π; t) must be redefined to v1(π; t) ≡ inf {v ∈ [0, v̄] : t/ℓ(v) ≥ π}.
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t2 segments users into three groups:

N = [0, v0(π)), U = [v0(π), v1(π; t2)), and V = [v1(π; t2), v̄]. (7)

Importantly, observe that because benefits b(v) increase in v, all types v below v0(π)—the

type who is indifferent between doing unverified sharing and not sharing—necessarily obtain

lower utility ((1−π)b(v)− t) from verified sharing than the threshold type v0(π). As t keeps

falling from t2, the threshold types v0 and v1 will, eventually, coincide (i.e., v1(π; t) = v0(π)),

implying that there will be no unverified sharing in the market. That is, the market will

segment into two at that point—but critically, no types below v0(π) have entered the sharing

world yet, as entry emerges only when type v0 turns to verify news. Thus, reductions in

verification costs trigger entry only after that point—a strong form of sensitivity then ensues.

The next result collects these findings and also states how our notion of strong sensitivity

manifests when the sharing loss ℓ is decreasing.

Proposition 2. Suppose that b is increasing, and fix prevalence π ∈ [0, 1]. Then:

(i) If ℓ is increasing, entry cannot occur before U is exhausted, i.e., a transfer of mass

from N to V cannot occur before all users in U have switched to V.

(ii) If ℓ is decreasing, entry cannot occur before type v0(π) exits U, i.e., a transfer of mass

from N to V cannot occur before some users in U switch to V.

Figure 3 illustrates this phenomenon. There, we plot the masses ΣU(= Σ), ΣV and

ΣN = 1 − ΣU − ΣV of U, V, and N, respectively, as a function of verification cost t

(horizontal axis) for a fixed prevalence π. In the left panel, sharing loss ℓ is increasing.

Thus, as t decreases, i.e., as we move from right to left along the horizontal axis, all the

masses remain constant for large t. At some point, however, ΣU begins to decrease, while

ΣV increases by the same magnitude. Eventually, ΣU vanishes while ΣV keeps increasing

but now at the expense of ΣN.

The right panel considers a decreasing loss function ℓ. As in the previous case, for any

given prevalence π, entry for low types cannot occur unless v0(π) is incentivized to verify.

However, unlike in the previous case, v0(π) is the first type in U that will engage in verified

sharing as t falls, as its loss is the highest among those users. Consequently, as verification

cost t falls from high values, ΣV takes off from zero at the same time that both ΣN and ΣU

begin decreasing, reflecting Proposition 2-(ii). In particular, whenever the market segments

into three sets, it is the intermediate types (i.e., those around v0(π)) that verify news; in turn,

low types do not share, while high types engage in unverified sharing—as seen in Figure 9

in Appendix A.6.
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Figure 3: Masses ΣU,ΣV and ΣN. The left panel considers increasing losses, using ℓ(v) = v and
b(v) = 4v1.8 as in Figure 2. The right panel considers decreasing losses, using ℓ(v) = 1/(v + ϵ)0.4

and b(v) = 4v0.8/(v + ϵ)0.4, with ϵ = 0.01 (the use of any ϵ > 0 renders ℓ(v) continuous at v = 0,
only for consistency with our assumption). In both panels, b(v)/ℓ(v) = 4v0.8 (so the propensity to
share is fixed across these two cases), while π = 2/3 and v ∼ U [0, 1].

4.2 Decreasing benefits

With a propensity to share that increases across types (Assumption 1), decreasing benefits b

necessarily imply that losses ℓ must decay too, albeit at a higher rate. We can now establish

our main result on weak sensitivity of the pass-through curve Σ: lowering verification costs

can have a positive and non-trivial effect on the circulation of true content, but need not

decrease the sharing of misinformation.

Proposition 3. Fix prevalence π ∈ [0, 1] and suppose b is decreasing (and so ℓ is decreasing

too). Then, entry occurs strictly before U is reduced, i.e., as verification cost t falls from

high values, a transfer of mass from N to V occurs before users in U switch to V.

In the left panel of Figure 4, lowering verification costs results in a clock-wise rotation

of the increasing straight lines encoding t/ℓ. In the right panel, this generates entry and no

reductions in unverified sharing for large t: ΣV grows by the same amount that ΣN falls.

To understand why, recall that both losses and benefits are decreasing. Types below the

threshold v0(π)—the first type doing unverified sharing—then decide against doing unverified

sharing because their potential (large) losses outweigh their potential (large) benefits. Since

benefits are decreasing, some low types find it optimal to enter the market as verification

costs fall: verifying news enables then to skip such potential losses and enjoy their relatively

high benefits from sharing truthful content. But since losses are decreasing too, type v0(π)

will not change his behavior initially: since this type’s losses are smaller relative to those of

lower types, v0(π) will demand a bigger drop in verification costs to switch from unverified to
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Figure 4: Propensities to share news and skip verification (left), and masses (ΣV,ΣU,ΣN) (right)
when types v ∼ U [0, 1] and losses and benefits are decreasing according to ℓ(v) = 0.5/(v + ϵ) and
b(v) = 2/(v + ϵ)0.2, with ϵ = 0.01. As in the previous figure, π = 2/3 in the right panel. (Without
loss, the loss ratio b(v)/ℓ(v) = 4(v + ϵ)0.8 shifts up compared to the previous figures.)

verified sharing. Eventually, as seen in the right panel, as t continues dropping, this happens

and ΣU begins falling only after a substantial amount of entry has taken place.

Propositions 2-3 can be a useful starting point for understanding the effectiveness of fact-

checking initiatives, beyond the role that behavioral biases and/or relationships may have in

shaping the incentives to check news. Further, these findings yield testable predictions. To

this end, let us return to our two interpretations, in which v reflects either popularity or age.

Start with the latter: if a user’s number of followers falls with the user’s age on average,

we can expect the benefits of sharing truthful content to be lower for older individuals on

average. But the associated losses can decay with age too, and at a higher rate: lower

reputational losses can originate from both fewer followers and the shorter horizons over

which the losses are experienced. In this case, if verification is infeasible, older users engage

in unverified sharing, while younger ones act cautiously by refraining from sharing news. By

Proposition 3, as fact-checking services are introduced, younger cohorts immediately begin

sharing content that they have certified to be true, but this need not change the equilibrium

pass-through rate of misinformation and prevalence if older users continue doing unverified

sharing. Our analysis indicates that platforms should see more news being circulated early

on largely driven by true content, but a rather constant fake news prevalence.

By contrast, suppose that v is a popularity index within a cohort, i.e., users of a given

age are ranked by their number of followers—in this case, both benefits and losses can be in-

creasing across types. If more popular types are more likely to share news (benefits dominate

losses), those types do unverified sharing if verification is infeasible. By Proposition 2-(i), the

strongest form of sensitivity arises: as fact-checking is introduced, the most popular types

begin verifying news, and it is only until unverified sharing stops that less popular types
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enter the market. The prediction is that, conditional on a change in equilibrium prevalence

(recall Figure 1), a platform should experience a decrease in both fake news prevalence and

overall news circulation as the service becomes available early on.

Let us conclude with two observations. First, as argued, an increasing propensity to

share function b/ℓ/(1 + b/ℓ) is simply a natural way of ordering types. However, we have

also imposed that b and ℓ are monotone: this is conceptually useful—it allows us to uncover

the notions of weak and strong sensitivity discussed—and it constitutes a reasonable approx-

imation when thinking about age and popularity. Importantly, the technical advantage of

this assumption is minimal. For instance, Figure 10 in Appendix A.6 shows that, if losses are

non-monotone yet the ranking of types is fixed according to their propensity to share, the

pass-through curve exhibits qualitatively similar contractions as t falls; the main difference

is that U ceases to be a single interval—how users segment is more subtle.13

Second, our last discussion on overall news circulation brings us to the topic of diffusion

of fake news ; in particular, its interplay with verification incentives, which we examine in

the next section. To offer the maximum scope for verification effects affecting outcomes, we

assume that both b and ℓ are increasing in what follows. In this way, the misinformation

pass-through curve necessarily contracts when verification is at play.

5 Supply Interventions and Fake News Diffusion

Among the variety of responses to combat misinformation, platforms have taken actions

that aim to reduce the profitability of fake content. This section uncovers when and why

the resulting weaker producers’ incentives can have the downside of increasing the diffusion

of misinformation.

Diffusion of fake news. As a starting point, note that Π(σ) = F (σ) is effectively a

traditional supply function. Thus, interventions that limit the supply of fake news can be

modeled as standard inward supply shifts that capture weaker incentives to produce fake

content. For instance, banning repeat offenders can be seen as a cost for producing fake

news articles f ∈ (0, 1) that is orthogonal to that of content generation (e.g., change of

identity and website appearance), resulting in a new supply

Π(σ) = F (σ − f).

13Lack of sensitivity of Σ(π; t) to t for sufficiently low prevalence rates π is a generic property in the model
because ℓ is finite, so t/ℓ > 0 for all t ≥ 0. Thus, for sufficiently low values of π, namely, t/ℓ(·) > π, no user
type has incentives to engage in news verification.
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Alternatively, curtailing fake news producers’ ability to attract advertisers results in an

overall lower return after sharing occurs (e.g., because fewer advertisers place ads on un-

trustworthy websites), which can be captured via a scalar α ∈ (0, 1) such that

Π(σ) = F (ασ).

As in standard competitive analyses, the prevalence of fake news decreases after a left

shift of the supply curve. However, by moving upward along the “demand curve,” the pass-

through rate increases: with a lower prevalence of fake news, fewer users are willing to verify.

Figure 5 depicts this phenomenon.

Figure 5: Left panel: Π(σ − f), f = 0.25. Right panel: Π(ασ), α = 0.6. Both panels consider
parameter values: v̄ = 1, G(v) = v, F (c) = c2, b(v) = v2, ℓ(v) = v/2, and t = 0.1.

The novelty is that the shaded areas in Figure 5 capture a key measure of interest: the

diffusion rate of fake news articles,

∆∗ ≡ π∗σ∗,

or the expected number of fake news articles that are transmitted downstream, which is a

measure of misinformation dissemination in our model. In the remainder of this section, we

seek conditions under which a reduction in prevalence leads to an increase in diffusion ∆∗,

exactly as depicted in the shaded areas in Figure 5 when the supply of fake news contracts.

Elasticities. Our approach consists of deriving local sensitivity measures analogous to

traditional elasticities that are key in this respect. To this end, let us denote

Ez(χ) :=
∂ log(χ)

∂ log z

for the elasticity of a differentiable function χ with respect to the variable z. Equipped

with this, let ∆(π) := Σ(π; t)π denote the extent of diffusion as a function of prevalence.
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It is then easy to verify that, when b and ℓ are differentiable—which we assume in what

follows—∆(π)/∂π < 0 if and only if

|Eπ(Σ)| > 1. (8)

In other words, diffusion ∆ increases after a decrease in prevalence π, as long as the misin-

formation pass-through curve Σ is elastic. (Recall that ∂Σ/∂π ≤ 0 always.)

Next, as defined in Section 4, Σ(π) ≡ ΣU(π), ΣV(π), and ΣN(π) denote the mass of users

who share unverified news, verified news, and do not share, respectively, given prevalence π.

Furthermore, since benefits and losses are increasing (Section 4.1), then, provided the pass-

through curve Σ is positive, it follows by (7) that

ΣN(π) = G(v0(π)), Σ(π) = G(v1(π))−G(v0(π)), and ΣV(π) = 1−G(v1(π)),

where v0(·) and v1(·) are defined in (6). Thus, since Σ = 1− ΣN − ΣV, we deduce that

|Eπ(Σ)| =
(
ΣN

Σ

)
Eπ(ΣN) +

(
ΣV

Σ

)
Eπ(ΣV), (9)

where all the terms on the right-hand side are non-negative. This is intuitive: an increase

in fake news prevalence can lead to a strong (percentage) reduction in unverified sharing Σ

because many users decide to “exit” the sharing world (Eπ(ΣN) term) and/or because many

of them decide to begin verifying news (Eπ(ΣV) term).

The advantage of (9) is twofold. First, from an empirical perspective, it depends on users’

decisions to share and verify news, which is data readily available to platforms. Second, from

a conceptual perspective, identity (9) can be used to inform under what circumstances (8)

holds by finding intuitive conditions on primitives that guarantee that either ΣN or ΣV are

sufficiently elastic themselves. We state the conditions in the next result.

Proposition 4. Suppose that b and ℓ are increasing and that Assumption 1 holds.

(a) Suppose that the equilibrium (π∗, σ∗) is such that σ∗ ≤ ΣN(π
∗). Then, |Eπ(Σ)| >

Eπ(ΣN). A sufficient condition for Eπ(ΣN) > 1 is that b(v)/ℓ(v) is concave and the

density g(v) is non-decreasing.

(b) Suppose that the equilibrium (π∗, σ∗) is such that σ∗ ≤ ΣV(π
∗). Then, |Eπ(Σ)| >

Eπ(ΣN). A sufficient condition for Eπ(ΣV) > 1 is that 1/ℓ(·) is concave and the density

g(v) is non-increasing.

Consider (a). From (9), it is straightforward to conclude that the elasticity of ΣN is a
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lower bound for the elasticity of Σ. The rest of the conditions in turn ensure that ΣN has

an elastic response to an increase in π. Indeed, since ΣN(π) = G(v0(π)), it follows that

Eπ(ΣN) = Ev(G(v0(π)))× Eπ(v0(π)),

which means that it suffices to have both an elastic distribution G and an elastic threshold

type v0—the last (popularity-wise) type doing unverified sharing, which is the “marginal”

type in this case. In turn, these are guaranteed by a convex distribution G and a concave

benefit-to-loss ratio b/ℓ, respectively. Intuitively, as more popular types—i.e., those more

prone to sharing news—become increasingly more abundant (convex G), an increase in

prevalence can lead to a strong exit of users from the sharing world for a fixed change in

v0. And if the propensity to share has slow growth (as b/ℓ is concave), any increase in

prevalence leads to a large increase in the marginal type v0, analogous to a sharp reduction

in the quantity demanded after a price increase in the case of an elastic demand curve.

Similarly, the conditions in (b) ensure a significant exodus of users from U to V after

a (percentage) increase in prevalence. Indeed, since ΣV(π) = 1 − G(v1(π)), by symmetry

relative to case (a), this happens when G is concave and v1 (which is decreasing in π) is

elastic; but the latter is guaranteed when 1/ℓ falls at decreasing rates due to the (verification)

marginal type satisfying t/ℓ(v1) = π: as with b/ℓ in (a), this reflects an elastic t/ℓ, ensuring

that a large number of less popular types become willing to verify news after π increases.

One advantage of the elasticity test in part (a) in Proposition 4 is that can be applied to

situations in which the equilibrium prevalence lies on the “rigid” part of the misinformation

pass-through curve—namely, the prevalence region where ΣV = 0 for small changes in t—

as the elasticity of Σ is determined by that of ΣN in those regions.14 On the other hand,

(b) is applicable only to situations in which verification does take place in equilibrium, as it

demands ΣV > 0. (In those regions, test (a) could be used as well, as users can be segmented

into three non-trivial sets as argued.) Two observations are instructive in this regard. First,

Proposition A.1 in the Appendix shows that (a)-(b) admit minimal modifications so the

conditions on the density g are not mutually exclusive, thereby allowing for the possibility of

a non-monotone density g for instance; in turn, this means that (a) and (b) are potentially

applicable depending on where specifically the equilibrium prevalence π∗ lies.15 Second, less

14Of course, the exact region will depend on the hypothetical change in t considered. But so long as
ΣV = 0, it follows that Σ = 1−G(v0(π)), where v0(π) is independent of t if Σ > 0.

15Condition (a) for g is weakened to hold over [0, v0(π)] only, while the analogous one in (b) over [v1(π), v̄],
where v0 < v1. Consider now Figure 1: in the low prevalence equilibrium, v1 = v̄ (no one verifies news), so
v0 matters for the elasticity of Σ. Conversely, in the high prevalence equilibrium, the fact that v1(π) < v̄
makes (b) applicable. Trivially, a decreasing concave 1/ℓ does not preclude an increasing concave b/ℓ.
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stringent tests can be easily obtained using (9): for instance, after dropping the requirement

that σ∗ < ΣN(π
∗) in (a), one can check ex post that Eπ(ΣN)(π

∗) > Σ(π∗)/ΣN(π
∗) to verify

an elastic pass-through curve Σ at π∗.

Part (b) is also useful for examining how the overall elasticity of Σ responds to changes

in t. Specifically, recall from Section 4.1 that the pass-through curve Σ exhibits strong

sensitivity to verification costs, in the sense that a partial reduction in unverified sharing

resulting from a drop in t necessarily occurs via users in U switching to V exclusively (i.e.,

∂ΣN/∂t = 0). As a result, it suffices to show that ΣV becomes more elastic with respect

to π as verification cost t falls—i.e., that ∂Eπ(ΣV)/∂t < 0—to ensure that the pass-through

curve Σ inherits the same property.16 A mild strengthening of the conditions on primitives

in (b) guarantees this to happen.

Proposition 5. Suppose that the hazard rate g(v)/(1 − G(v)) is non-increasing and that

1/ℓ(v) is concave. Then, as long as ΣV > 0, the elasticity of the pass-through curve |Eπ(Σ)|
strictly increases as verification cost t decreases.

Proposition 5 is useful because it can inform, in conjunction with Proposition 4-(b), on

when joint policies can potentially reinforce each other negatively. Specifically, by making the

misinformation pass-through curve more sensitive to reductions in prevalence, improvements

in fact-checking can result in supply interventions acting as a catalyst for increasing the

diffusion of misinformation in a platform.

Relative to Proposition 4-(b), the conditions on primitives ensure that the aforementioned

exodus of users from U to V after an increase in prevalence π in fact becomes stronger as

verification cost t decreases. In turn, this is guaranteed to happen whenever

Eπ(ΣV) = Ev(1−G(v1(π)))× Eπ(v1(π)) =
g(v1)

1−G(v1)
×
[
−π∂v1

∂π

]
(10)

is decreasing in t. Indeed, since the “marginal type” engaging in verification, v1, is increasing

in t and decreasing in π, it suffices to have a decreasing hazard rate and a supermodular v1.

In other words, either g must decay sufficiently fast as popularity increases or, as verification

cost t falls, type v1 must fall faster following an increase in prevalence π.

6 Internal Filters

We now enrich the model to allow for detection algorithms. A key concern regarding such

platform filters has been their potential use for removing content before it reaches users, a

16Using (9), this follows from (ΣN/Σ) and (ΣV/Σ) growing after a fall in t, and the fact that ∂ΣN/∂t = 0.
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practice that some studies document can be perceived as a form of censorship (e.g., Lazer

et al., 2018). In contrast, we offer an economic rationale for the cautious use of such algo-

rithms based on users’ verification incentives.

We consider the case in which an algorithm screens news articles imperfectly as they

enter the platform, and before they reach consumers. Clearly, eliminating truthful news

articles carries social costs. Thus, we focus on the more interesting case in which truthful

news articles always survive, but fake news articles are detected with probability ϕ ∈ [0, 1].

Because of the public announcements that platforms have made on this topic, we assume that

changes in ϕ, which measures the filter quality, are observable to both users and producers.

Also, we focus on the effects of introducing such filters, captured by increasing ϕ from zero.

Our analysis from Section 3 admits a direct adaptation to this case. To this end, suppose

that a mass π of news enters the platform. By Bayes’ rule, the posterior chance that a user

identifies a news item as false upon encountering it is given by

ψ(π;ϕ) ≡ (1− ϕ)π

1− ϕπ
,

which is the right measure of fake news prevalence in this context. This variable decreases

as ϕ increases and as π decreases.

The methods from Section 3 then admit minimal modifications. Specifically, the set of

users who share unverified news is now U(ψ(π, ϕ); t) (see (3)), while the unverified sharing

locus becomes Σ(ψ(π;ϕ)))=
∫
U(ψ(π,ϕ);t)

dG(v). However, from the producers’ perspective, the

relevant variable is the pass-through of fake news, which also incorporates the filter’s effect:

(1− ϕ)Σ(ψ(π;ϕ))). (11)

Each potential fake news producer then takes as given the (candidate) equilibrium pass-

through rate, σ ∈ [0, 1], which leads to a supply curve Π(σ) = F (σ) as in (5). Also, as in

Section 3, the unique equilibrium (π∗, σ∗) is given by the intersection of the pass-through of

fake news and the supply curve, i.e., Π((1−ϕ)Σ(ψ(π∗;ϕ))) = π∗ and σ∗ = (1−ϕ)Σ(ψ(π∗;ϕ))).

Equipped with this reformulation, we establish the conditions under which increasing the

filter precision could lead to more creation and diffusion of fake news.

Proposition 6. (a) Suppose that b(v)/ℓ(v) is concave and the density g(v) is increasing.

If σ∗ ≤ ΣN(π
∗) when ϕ = 0, both the equilibrium production, π∗, and the rate of

diffusion, ∆∗, are increasing in ϕ at ϕ = 0 and eventually decrease in the same variable.

(b) Suppose that 1/ℓ(v) is concave and that the hazard rate g(v)/(1−G(v)) is non-increasing.
If σ∗ ≤ ΣV(π

∗) when ϕ = 0, and g(0) > ℓ′(0)/ℓ(0), then there exists a verification cost
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Figure 6: Parameter values: v̄ = 1, G(v) = v, F (c) =
√
c, b(v) = v2, ℓ(v) = v/2, and t = 0.1.

t̂ > 0 such that for all 0 < t < t̂ the same conclusion holds.

The presence of a filter implies that encountering content is “good news:” each user is

now more optimistic about the veracity of the news item, encapsulated in ψ(π, ϕ) < π for all

π ∈ (0, 1). With greater optimism, there is more entry to the unverified sharing world: users

in N switch to U. Part (a) in the proposition shows that the requirements of Proposition 4-

(a)—which guarantee an elastic ΣN in the absence of a filter, and hence a substantialN → U

switch—are enough to ensure an increase in unverified sharing that more than outweighs the

extra layer of protection that a filter provides—at least for low values of ϕ. Figure 6 shows

how this effect can be strong for a wide range of levels of filter quality.

But such optimism can also lead to a weakening of the incentives of those verifying: users

in V switch to U. Similarly to (a), part (b) in the proposition shows that the requirements

of Proposition 5 can be exploited to generate a sufficiently elastic ΣV, but this time provided

verification costs are sufficiently low: in this case, there is enough verification taking place

in equilibrium that the addition of a filter can generate a strong relaxation of verification

incentives. This strong relaxation is in the form of ΣV satisfying that, when ϕ = 0,

Eπ(ΣV) ≥
1

1− π
,

which is more demanding than the unit elasticity analog, in a reflection of the additional

protection that the filter provides around ϕ = 0. Whenever there is enough elasticity around

the lowest type v = 0, i.e., g(0)ℓ(0)/ℓ′(0) > 1, the above will be satisfied as t falls due to v1

becoming small—and we can show that the requirement σ∗ < ΣV(π
∗), which ensures that

Eπ(Σ) > Eπ(ΣV), becomes automatically satisfied for low enough verification costs.17

17It is interesting that part (a) here does not require stronger conditions relative to Proposition 4-(a) to
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7 Extensions

In this section, we extend our model to allow for (i) market power and (ii) network externali-

ties. The former can be relevant for at least three reasons: supply interventions pressure the

industry to shrink over time, at least in the short term; the costs of producing digital fake

content are largely fixed, and they increase as technologies become more sophisticated (e.g.,

“deep fakes”); and recent work has documented the existence of parent companies that own

several untrustworthy sites (Sydell, 2016). As for network externalities, it is well-recognized

that the value of platforms (in a broad sense) critically depends on how many individuals use

it—in addition, in the particular case of social media, such platforms are a natural setting

where elements of social influence likely shape the behavior of users.

7.1 Market Power

Consider a monopolistic fake news producer. For consistency with our previous “competi-

tive” analysis, we assume that the monopolist inherits the cost structure of the competitive

case, encapsulated in the distribution F : the monopolist is either a single producer who ex-

periences marginal cost F−1(π) when π fake articles have been produced, or it corresponds

to a “parent” company who owns a large number of smaller producers with costs distributed

according to F—in this case, only those producers with c ≤ F−1(π) would be active when π

fake articles are to be produced, and hence the same marginal cost interpretation ensues.

Uniform policies. The monopolist must choose the mass π ∈ [0, 1] of fake news articles

to be produced—since the choice variable is a one-dimensional scalar, we say that the policy

is uniform. If the pass-through rate of fake content is given by σ when prevalence takes value

π, the monopolist’s profits are then given by

σ · π −
∫ π

0

Π−1(π′)dπ′, (12)

where Π(·) = F (·) denotes the supply of fake news.18 In other words, profits are captured

by the area between σ and the (inverse) supply Π−1 over the interval [0, π].

In traditional market power, we would use the fact that σ = Σ(π) to optimize (12) and

find an optimum; call it πM . Since Σ is downward sloping, πM < π∗. Implicit in this logic,

satisfy the analog condition for N, namely, Eπ(ΣN) > 1
1−π . This is because v0 is inherently more elastic

than v1: changes in π affect both margins in the unverified sharing constraint (1−π)b > πℓ which pins down
v0, but only one margin in the no-verification constraint t > πℓ that determines v1.

18In the parent company interpretation, total costs obey
∫ F−1(π)

0
cF (dc), but the change of variables c(π′) =

Π−1(π′) yields
∫ F−1(π)

0
cf(c)dc =

∫ 0

π
Π−1(π′)[f(Π−1(π′))/f(F−1(π′))]dπ =

∫ π

0
Π−1(π′)dπ′, as desired.
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Figure 7: User segmentation as the concave closure of the pass-through cruve Σ over [0, π̃]. The
figure considers the parametrization of Figure 1 with verification cost t = 0.1 and π̃ = 0.9. By
segmenting the user population, the monopolist can reverse the effects of verification.

however, is that the monopolist can move along Σ which, in traditional markets, is trivially

guaranteed by the observability of the price. From section 2, however, neither σ nor π are

directly observable by users, but rather anticipated in equilibrium. Indeed, this is a key

institutional feature that distinguishes our setting from markets for traditional goods.

This informational asymmetry renders the situation as one of simultaneous moves from

a strategic viewpoint. From this perspective, a simple inspection of (12) reveals that the

equilibrium of Section 3 is unchanged: (σ∗, π∗) is the only tuple such that (i) the monopolist

behaves sequentially rational given a fixed misinformation pass-through rate, and (ii) users

hold correct beliefs given the monopolist’s choice of fake news prevalence. A takeaway,

therefore, is that policies that foster platform transparency, such as revealing π estimates to

users, may facilitate the monopolist’s ability to exercise market power. Conversely, platform

opacity can be used to harm “large” fake news producers by lowering their profits.

Segmentation. That said, the monopolist can attempt to improve upon the competitive

outcome by resorting to segmentation strategies. To see how this can be done, consider

Figure 7: there, the competitive outcome is denoted by E, and we have depicted a segment

AB that intersects the supply of fake news at the point C. Clearly, if the latter point is

achievable, it will yield more profits than E (recall the area representation of profits).

Point C := (πC , σC) can be implemented by segmenting the original market into two

submarkets. Indeed, letting πA and πB denote the projections of A and B on the π axis,

there is λ ∈ (0, 1) such that πC = λπA + (1− λ)πB . The monopolist could then create two

submarkets—call them A and B—with intended prevalence levels πA and πB, as follows:

1. Send λπC fake news articles to segment A, and (1− λ)πC fake news articles to B;
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2. If ω and 1 − ω are the sizes of A and B, respectively, send (1 − πC)(1 − ω) truthful

news articles to B, the high prevalence market;

3. Supplement the remaining volume of truthful news (1− πC)ω to be sent to submarket

A—the low prevalence submarket—with τ additional news;

4. This procedure generates levels of prevalence λπC
λπC+(1−πC)ω+τ

and (1−λ)πC
(1−λ)πC+(1−πC)(1−ω) for

A and B, respectively. The parameters ω ∈ (0, 1) and τ > 0 are then chosen so that

πA =
λπC

λπC + (1− πC)ω + τ
and πB =

(1− λ)πC
(1− λ)πC + (1− πC)(1− ω)

. (13)

The monopolist can always create a high prevalence submarket by shrinking its size given

a fixed supply of fake content: in (13), there is a unique ω ∈ (0, 1) such that the second

equality holds. However, by doing so, the size of the other submarket becomes fixed, so an

extra degree of freedom is needed to achieve low prevalence in the second market: in (13),

there is a unique volume τ > 0 of additional truthful news such that the first equality holds.

Altogether, the mass πC of fake items produced generates a revenue of

λπCΣ(πA) + (1− λ)πCΣ(πB) = πC [λΣ(πA) + (1− λ)Σ(πB)].

That is, point C in AB is implemented, and fake news profits grow.19

Towards the formal result, let us consider partial concavifications of Σ. Namely, given

0 <
˜
π < π̃ < 1, let Σco

˜
π,π̃ denote the infimum of the concave functions that are weakly

larger than Σ over [
˜
π, π̃]. Partial concavifications eliminate the possibility that πA = 0 or

πB = 1 in our previous discussion—i.e., segmentations in which the low-prevalence segment

either receives an infinite volume of truthful content (τ = ∞) or has negligible size (ω = 0),

respectively, both of which are clearly unrealistic.

Proposition 7. Given 0 <
˜
π < π̃ < 1, any point Σco

˜
π,π̃ can be implemented by creating at

most two subpopulations that only differ in their size, and where one sub-market is sup-

plied with additional truthful content. Further, if the competitive equilibrium π∗ is such that

Σco

˜
π,π̃(π

∗) > Σ(π∗), then segmenting the market can be profitable.

The type of segmentation just described is trivial in that the sub-populations do not

19Notice that as a consequence of adding truthful content to submarket A, fake news prevalence in the
whole platform becomes πC/(1+τ). Also, since the costs of producing truthful content by an unverified news
provider are fairly low—untrustworthy outlets can free ride on established ones—a payoff criterion based on
false content exclusively can be a good approximation if in addition truthful content diffuses more slowly
than misinformation does, a feature that has empirical support recently (e.g., Vosoughi et al., 2018).
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differ on observable characteristics, but only on their size.20 The strategy may seem naive,

especially in light of the granularity that some platforms offer in their targeting services: our

analysis uncovers that basic forms of segmentation need not be associated with negligible

harm. That said, the implementation of this form of segmentation requires users in each

group not only correctly anticipating the total number of fake content to be created, but

also the corresponding prevalence, which is more demanding than under uniform policies.

Finally, returning to our general model in sections 2–3, note that since b and ℓ are contin-

uous, it suffices that ℓ is bounded away from zero to ensure that an increasing propensity to

share b/ℓ/(1+b/ℓ) is strictly below 1 over [0, v̄]. In this case, Σ(·; t) vanishes strictly before 1,

and hence the ability to construct partial concavifications is a generic property: a convexity

in Σ around the vanishing point can be exploited with a π̃ sufficiently close to 1 (in which

case πB coincides with π̃). Two observations are useful in this respect. First, by shifting this

convex region inward (see Figure 1), segmentation strategies become an attractive option

to partially offset the reduction in prevalence that would have occurred otherwise. Second,

if the monopolist wanted to implement higher prevalence-pass-through rate pairs along the

supply curve as described above, this is likely to become increasingly difficult: the concavifi-

cation involved would exhibit a larger π̃—i.e., a more extreme segmentation—which means

that the high/low prevalence segment must be larger/smaller in size. In particular, a larger

volume of news must be directed to a shrinking low-prevalence segment.21

7.2 Network Externalities

We conclude the paper by showing how our framework can easily incorporate elements of

“social influence,” and how these can lead to nontrivial changes to our original pass-through

curve. To this end, we follow the approach of Becker (1991) by allowing individual choices

to depend on aggregate variables. Specifically, we now consider the case of losses given by

ℓ̃(v, σ) :=
ℓ(v)

n(σ)
,

where σ corresponds to the misinformation pass-through rate, while n is a differentiable

function satisfying n′ > 0 and n(0) = 1. That is, as a larger mass of users shares without

verifying, the loss that each type v suffers from sharing fake content decreases (e.g., because

it is easier to justify such behavior if many others are engaging in the practice).

20Population sizes are easy to control when targeting in online platforms; for instance, by setting different
monetary budgets in (similar) locations of interest.

21By contrast, the ability of exploiting concavifications with
˜
π very close to zero is not a generic property.

For instance, this does not happen when b(0)/ℓ(0) > 0, in which case ∂Σ/∂π = 0 in a neighborhood of zero.
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To isolate how a relaxation of verification incentives affects the sharing of unverified news,

we simply assume the benefits of sharing truthful news articles b(·) scale in the same manner;

in this way, the propensity to share remains unchanged.22 Specifically, recalling Section 3,

the mass of users who share without verifying obeys Σ̃(π;σ) ≡ G(v1(π;σ))−G(v0(π)), where

v0(π) = inf

{
v ∈ [0, v̄] :

b(v)/ℓ(v)

1 + b(v)/ℓ(v)
≥ π

}
and v1(π;σ) = inf

{
v ∈ [0, v̄] :

tn(σ)

ℓ(v)
≤ π

}
.

Our normalization then implies that all the changes occur via the margin v1(π;σ), which

adjusts because of its explicit dependence on σ.

In equilibrium, users’ beliefs about the pass-through rate, σ, must be correct, so the

pass-through curve, Σ(π), must solve the fixed point Σ̃(π;σ) = σ for each π, just as the

aggregate quantity demanded must satisfy a fixed-point in traditional models of network

externalities. The top panels of Figure 8 illustrate a typical situation: the left panel plots

the fixed points for a given value of π, while the right panel, the resulting Σ, which now

becomes a correspondence.23

Key to our analysis is the presence of regions in which networks effects dominate, result-

ing in Σ being increasing : higher prevalence levels can be consistent with larger unverified

sharing rates because users’ expectations of high unverified sharing behavior reduces veri-

fication incentives, making those expectations self-fulfilling. Supply interventions intended

to reduce the supply of fake news, as in Section 5, can have stronger unintended effects: in

the bottom left panel, this results in a higher prevalence and pass-through rate of fake news,

and hence to a larger diffusion rate ∆. In the bottom right panel, these interventions have

adverse “refining” effects: they shrink the set of equilibria to a single “bad” equilibrium as

the unique possible stable outcome (transition from E0 to E1 in the figure).

8 Concluding Remarks

This paper has developed a model of misinformation intended to examine the efficacy of

real-world policies deployed to combat the fake news problem, focusing on the ways in which

these interventions affect users’ incentives to verify news. This issue is of central importance

22For instance, users may expect other users to eventually leave the platform if unverified sharing behavior
were to become more frequent. With fewer users, the value of sharing truthful content decreases (popularity
interpretation). Thus, dividing b by n can be seen as a penalty associated with those long-term losses.

23Our correspondence is indeed a nonmonotonic function as in Becker (1991), but in the reversed coordinate
system: we look for fixed points on the vertical axes while he does so on the horizontal one. A similar
phenomenon arises in Kranton and McAdams (2020), where users are embedded in a network structure;
there, however, verification incentives are absent.
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Figure 8: Top left: fixed points of Σ̃(π; ·) for prevalence π = 0.25. Top right: pass-through
correspondence Σ(π). The bottom panels examine supply interventions: the baseline supply falls
to Π(σ) = F (0.78σ) in the left panel with F (c) = c4/3; while in the right panel, the supply falls to
Π(σ) = F (σ−0.17) with F being the CDF of a beta distribution with shape parameters (0.25, 0.1).
Parameter values: v̄ = 1, G(v) = v, b(v) = v2, ℓ(v) = v, t = 0.1, and n(σ) = 1 + 10σ4(3− 2σ).

because a common theme in the response of social media platforms to fight misinformation

has been to empower users: facilitating users’ ability to determine the veracity of content

without taking away their choice to ultimately decide whether to share. Verification incen-

tives thus play a crucial role in the extent to which misinformation spreads nowadays.

There are two distinctive aspects of our approach. The first is conceptual: by isolating

“verification constraints,” our model uncovers the possibility of fundamental limitations to

the success of several prominent interventions in place today, even when fully rational agents

are present; that is, even if behavioral elements stemming from information coming from

trusted sources, or from biases linked to ideologies, are not at play.24 Even more so, our

24The rational or “sophisticated” benchmark need not be considered too distant. Indeed, a sizable fraction
of the efforts by platforms, fact-checking organizations, and journalist associations have been devoted to
educational programs aimed at fostering user literacy in evaluating fake news—see Lyons (2018), Guess
et al. (2020a), and the News Integrative Initiative at https://www.journalism.cuny.edu/centers/tow-
knight-center-entrepreneurial-journalism/news-integrity-initiative/. A similar trend towards
educating consumers has emerged in response to privacy considerations. See Bonatti and Cisternas (2020)
for an application to price discrimination.
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results offer sharp predictions regarding how observable traits such as age and popularity, as

well as deeper parameters such as the distribution of gains and losses across those observable

traits, are likely to shape outcomes after the introduction of these policies—sometimes in

unintended ways, demonstrating that policies perceived to have positive direct effects may

create some risks via channels linked to incentives.

Second, from an operational perspective, our model has the advantage that it reduces to

a framework featuring forces akin to those of supply and demand. We leverage this feature

to obtain key elasticity measures that complement our conceptual findings by quantifying

the extent to which the potential unintended risks studied can arise, which we believe are

a critical aspect of policy evaluation in this area. A potential path going forward is to

exploit the tractability of our approach for estimating our elasticity measures under a richer

model that focuses not only on verification incentives. In their current form, however, these

measures still constitute useful guidance regarding the type of data and sources of variation

that are needed to empirically evaluate key interventions in social media platforms. They

can also be seen as conservative estimates regarding the unintended risks that can arise.

Finally, our policy exercises have been guided by their practical importance, but others

are available. Examples include making news transmission more costly (e.g., via additional

clicks) or using algorithms that need not remove news articles but can instead route them to

different individuals based on past behaviors, or on signals about news that the algorithms

select. These and other topics are left for future research.

A Omitted Proofs

A.1 Proofs of Section 3

A.1.1 Proof of Lemma 1

Let λ denote the Lebesgue measure, and take an arbitrary continuous function φ : R → R.

Lemma A.1. If φ(·; t) is differentiable a.e. with |φ′(·; t)| > 0 a.e, then λ(φ−1({π})) = 0 for

any π ∈ R.

Proof: Assume that λ({v ∈ R : φ′(v) = 0 ∨ φ′(v) does not exist}) = 0, and consider

φ−1({π}) for π ∈ [0, 1]. It is well-known that the set of isolated points of the previous set,

ISO(φ−1({π})), is countable under the usual topology in R, and hence of Lebesgue measure

equal to zero. Consider now a point v∗ that it is not isolated and where the derivative

exists. Then, since set φ−1({π}) is closed, there exists and approximating sequence (vn)n

32



with φ(vn) = π for all n, and so φ′(v∗) = 0. Consequently, the set

(
φ−1({π}) \ ISO(φ−1({π}))

)
∩ {v ∈ R : φ′(v) exists}

has Lebesgue measure zero, and hence so does φ−1({π}). □

Proof of Lemma 1: Consider the Lebesgue-Stieltjes measure B 7→ µ(B) ≡
∫
B
dG for

all Borel sets B ⊆ [0, v̄]. We’ll show that Σ(·) is left continuous. Take π ∈ [0, 1] and an

increasing sequence (πn)n with πn ↑ π as n→ ∞. Since πn < π, it follows that V(π) ⊆ V(πn).
Thus,

Σ(πn)− Σ(π) =

∫
V(πn)

dG−
∫
V(π)

dG =

∫
V(πn)\V(π)

dG = µ(An),

where An ≡ V(πn) \ V(π) = {v : φ(v) ≥ πn and φ(v) < π}. Clearly, An is measurable, since

φ : [0, v̄] → [0, 1] defined in (3) is continuous as it is the minimum of two continuous functions.

Next, notice that An+1 ⊆ An for all n = 1, 2 . . ., namely, (An)n is a decreasing set sequence

with limn→∞An = {v : φ ≥ π} ∩ {v : φ(v) < π} = ∅. Thus, by continuity of the measure µ,

limn→∞ µ(An) = µ(limn→∞An) = µ(∅) = 0. Consequently, limn→∞Σ(πn) = Σ(π).

We now show that Σ(·) is, in addition, right-continuous. Consider π ∈ [0, 1] and a

decreasing sequence (πn)n with πn ↓ π as n→ ∞. Since V(πn) ⊆ V(π), as πn > π, it follows

that

Σ(π)− Σ(πn) =

∫
V(π)

dG−
∫
V(πn)

dG =

∫
V(π)\V(πn)

dG = µ(Bn),

where Bn ≡ V(π) \ V(πn) = {v : φ(v) ≥ π and φ(v) < πn}. Moreover, Bn ⊆ Bn+1 for all n,

i.e., (Bn)n is an increasing sequence with limn→∞Bn = {v : φ(v) = π} = {v : φ ≥ π} ∩ {v :

φ(v) ≤ π}. Thus, limn→∞ µ(Bn) = µ(limn→∞Bn) = µ(φ−1{π}). But, since µ is absolutelty

continuous with respect to the Lebesgue measure (λ), and λ(φ−1{π}) = 0 by Lemma A.1,

it follows that µ(φ−1{π}) = 0, and so limn→∞Σ(πn) = Σ(π). □

A.1.2 Proof of Proposition 1

Consider the composite function Σ ◦ Π : [0, 1] → [0, 1]. We’ll show that Σ(Π(·)) has a

unique fixed point. First, it is clear that Σ(Π(·)) is continuous, since it is the composition

of two continuous functions. Second, when σ = 0 we have Π(0) = 0 and so Σ(Π(0)) = 1.

Conversely, when σ = 1, we have Π(1) = 1. We now argue that Σ(1) = 0. Indeed, notice

that φ(v) ≤ b(v)/ℓ(v)
1+b(v)/ℓ(v)

< 1 a.e., since b(v)/ℓ(v) is finite a.e. Thus, V(1) = {v : φ(v) = 1} has

Lebesgue measure zero, and so Σ(1) =
∫
V(1) dG = 0. Altogether, by the Intermediate Value

Theorem, there exists σ∗ ∈ (0, 1) with Σ(Π(σ∗)) = σ∗.

Finally, we show that σ∗ is unique. Suppose not. Then, without loss of generality, there
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exists another fixed point σ̃ < σ∗. Since Π(·) is increasing, it follows that Π(σ̃) ≤ Π(σ∗).

Thus, Σ(Π(σ̃)) ≥ Σ(Π(σ∗)), since Σ(·) is decreasing. But then, σ̃ ≥ σ∗, since each is a fixed

point, which is a contradiction. This completes the proof. □

A.2 Proofs of Section 4

A.2.1 Proof of Proposition 2

Proof (i): We’ll show that if not all types v ∈ U migrate to V, then a transfer from N to V

cannot occur. To this end, first notice that U has a positive measure as long as verification

cost t > πℓ(v0(π)). Indeed, since ℓ and b/ℓ are each increasing in v, a user with type v

finds it optimal to engage in unverified sharing when both v ≥ v0(π) and v ≤ v1(π; t), where

the threshold types, v0(π) and v1(π; t2), are defined in (6). Now, if t > πℓ(v0(π)) then

v1(π; t) > v0(π), and thus U = [v0(π), v1(π, t)] is a non-empty interval with positive mass.

Thus, to prove the result we consider a decrease in verification cost from t1 to t2 > πℓ(v0(π)).

First, as previously argued, U = [v0(π), v1(π, t2)] remains non-empty and with positive

measure after the cost reduction. Second, consider the user types that find it optimal not

to share, i.e., v ∈ N. These types prefer not sharing to doing unverified sharing; thus, any

v ∈ N is bounded above by v0(π). But since v0(π) < v1(π; t2), it follows that v < v1(π; t2)

for all v ∈ N. Finally, since the sharing loss function ℓ(·) is increasing, this means that every

v ∈ N prefers unverified sharing to verified sharing, implying that no type v ∈ N will find it

optimal to switch to V. Thus, a transfer from N to V cannot occur before all v ∈ U have

migrated to V. □

Proof (ii): We’ll show that if no type v ∈ U switches to V, then there cannot be a transfer

from N to V. To this end, first notice that because the loss function ℓ(·) is decreasing, the
set of users who engage in unverified sharing is now given by U = [max{v0, v1}, v̄]. Indeed,
since b/ℓ is increasing, type v prefers unverified sharing to not sharing when v ≥ v0(π);

however, since ℓ is decreasing, the same type prefers unverified sharing to verified sharing

when v ≥ v1(π; t), where v0(π) and v1(π; t2) are given by (6). Therefore, U is unaffected by

verification cost t as long as v0(π) > v1(π; t), or equivalently t > πℓ(v0(π)).

Next, consider a reduction in verification cost from t1 to t2 > πℓ(v0(π)). As discussed

above, no type v ∈ U will switch after the verification cost falls, and thus we must have

v0(π) ≥ v1(π; t2). We now show there cannot be a transfer from N to V. To this end, let us

define v2(π; t) as the type that is indifferent between verified sharing and not sharing:

v2(π; t) ≡ inf {v ∈ [0, v̄] : (1− π)b(v)− t ≥ 0} , (A.1)
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with the convention that v2(π; t) = v̄ if the set is empty. Next, we prove that v0(π) ≤
v2(π; t2). Indeed, type v0(π) obtains a zero payoff from doing unverified sharing, and prefers

unverified sharing to verified sharing; thus, (1−π)b(v0)−t2 ≤ 0 ≤ (1−π)b(v2)−t2, where the
last inequality follows from the definition of v2. Since the benefit function b(·) is increasing,
we have v0(π) ≤ v2(π; t2). Combining this with the fact that no type v ∈ U switches after the

cost reduction takes place, we see that v1(π; t2) ≤ v0(π) ≤ v2(π; t2). This double inequality

implies that, in fact, almost no type v finds it optimal to engage in verified sharing, since

this would require verified sharing to dominate both not sharing (i.e., v ≥ v2) and unverified

sharing (i.e., v ≤ v1), which cannot happen generically as v1 ≤ v2. We conclude that there

cannot be a transfer of positive mass from N to V if no users in U switch first to V. □

A.2.2 Proof of Proposition 3

As in the proof of Proposition 2-(ii), since b/ℓ and ℓ are respectively increasing and decreasing

in v, the set of users who engage in unverified sharing is U = [max{v0, v1}, v̄], with v0(π)

and v1(π; t2) defined in (6). We’ll show that if U remains constant after a reduction in t,

then a positive mass of users transfers from N to V. To this end, consider t1 and t2 with

t1 > t2 > πℓ(v0(π)). This last inequality ensures that U remains constant after t falls from

t1 to t2, as it implies that v0(π) > v1(π; t2) > v1(π; t1).

Now, consider types v ∈ N, and v2(π; t) defined in (A.1). Since b is decreasing, v2 falls

in t. Also, any type v ∈ N prefers not sharing to verified sharing (i.e., v ≥ v2) and prefers

not sharing to unverified sharing (or, v ≥ v0). So if t > πℓ(v0) then v0 > v2, since benefits b

are decreasing and type v2 obtains a higher payoff from engaging in unverified sharing than

type v0. Consequently, N = [v2, v0] is a non-empty interval with positive mass.

Having characterized N, notice that as t falls from t1 to t2 < t1, every type v in the

interval [v2(π; t1), v2(π; t2)) will exit N. Clearly, this set has a positive mass. We’ll show

that all these types migrate to V, namely, each turns to share verified news. First, because

b is decreasing, any type v < v2(π; t2) prefers verified sharing to not sharing. It remains to

check that any type v < v2(π; t2) also prefers verified sharing to unverified sharing (which

would happen if v2(π; t2) < v1(π; t2)). But this is true because v0(π) > v1(π; t2) (as U

remains constant) and so the following inequality holds:

(1− π)b(v2)− t2 = 0 = (1− π)b(v0)− πℓ(v0) > (1− π)b(v1)− πℓ(v1) = (1− π)b(v1)− t2.

Thus, v2(π; t2) < v1(π; t2) since b is decreasing. Altogether, we have shown that every type

v ∈ [v2(π; t1), v2(π; t2)) finds it optimal to share verified news, i.e., they switch from N to V

as verification cost t falls from t1 to t2. This concludes the proof. □
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A.3 Proofs of Section 5

A.3.1 Proof of Proposition 4

First, we show that the conclusion is implied by condition (a).

Step 1: v0(π) is convex for π ≤ π̄0. Let p(v) ≡ b(v)/ℓ(v) with p(0) = limv↓0 b(v)/ℓ(v).

By (6), it follows that v0(π) ∈ (0, v̄) is determined by p(v0(π)) ≡ π/(1 − π). Also, since

p : [0, v̄] → [p(0), p(v̄)] is strictly increasing and concave, its inverse p−1 : [p(0), p(v̄)] → [0, v̄]

is strictly increasing and convex. Thus, for π0 and π̄0 respectively solving p(0) = π0/(1−π0)

and p(v̄) = π̄0/(1 − π̄0), we have v0(π) = p−1
(

π
1−π

)
for π ∈ [π0, π̄0]. For π < π0, we have

v0(π) = 0 by (6). Since the map π 7→ π/(1 − π) is increasing and convex, it follows that

v0(π) is increasing and convex for π ≤ π̄0.

Step 2: If σ∗ ≤ ΣN(π
∗) then |Eπ(Σ)| ≥ Eπ(ΣN). Let σ∗

V = ΣV(π
∗) and σ∗

N = ΣN(π
∗).

Since Σ(π) = 1− (ΣV(π) + ΣN(π)) for all π ≤ π̄, it follows that for π = π∗:

|Eπ(Σ)| = Eπ(ΣV)(σ
∗
V/σ

∗) + Eπ(ΣN)(σ
∗
N/σ

∗) ≥ Eπ(ΣN).

The inequality holds because both ΣV(·) and ΣN(·) are increasing in π, since the thresholds

v0(·) and v1(·) are, respectively, increasing and decreasing in π; also, σ∗ ≤ σ∗
N.

Step 3: Eπ(ΣN) ≥ 1. First, notice that ΣN(π) = G(v0(π)) is convex for π ≤ π̄0, since g(v)

is increasing in v, and v0(π) is increasing and convex. Also, ΣN(0) = 0 because v0(0) = 0,

and so ΣN(π) rises from the origin at increasing rates. Thus, ΣN must have an increasing

secant: (ΣN(π)/π)
′ ≥ 0. But then, Eπ(ΣN) ≥ 1. Altogether, |Eπ(Σ)| ≥ Eπ(ΣN) ≥ 1. □

Following similar logic, we now show that condition (b) also implies the desired result.

Step 1: If 1/ℓ(v) is concave then v1(π) is concave. By (6), v1(π) ∈ (0, v̄) is charac-

terized by ℓ̃(v1(π)) ≡ π/t, where ℓ̃(v) ≡ 1/ℓ(v) is monotone decreasing. Let π1 and π̄1 solve

ℓ̃(0) = π̄1/t and ℓ̃(v̄) ≡ π1/t, respectively. Then, for π ∈ [π1, π̄1], we have v1(π) = ℓ̃−1(π/t).

Note that for π < π1, v1(π) = v̄, given (6). Thus, for π ≤ π̄1, v1(π) is decreasing and

concave, since ℓ̃−1 is the inverse of a monotone decreasing concave function.

Step 2: If σ∗ ≤ ΣV(π
∗) then |Eπ(Σ)| ≥ Eπ(ΣV). Let σ∗

V = ΣV(π
∗) and σ∗

N = ΣN(π
∗).

Since Σ(π) = 1− (ΣV(π) + ΣN(π)) for all π ≥ π̄, it follows that for π = π∗ ∈ (0, π̄):

|Eπ(Σ)| = Eπ(ΣV)(σ
∗
V/σ

∗) + Eπ(ΣN)(σ
∗
N/σ) ≥ Eπ(ΣV),

where the inequality follows by the same reasons given in Step 2 above, but using σ∗ ≤ σ∗
V.

Step 3: Eπ(ΣV) ≥ 1. First, notice that ΣV is convex. Indeed, since G(v) is concave, 1−G(v)
is convex. Thus, ΣV(π) = 1−G(v1(π)) is increasing and convex, since it is the composition
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of a decreasing concave function v1(π), and a decreasing convex function 1−G(v). Moreover,

ΣV(0) = 0 for all π ≤ π1, since v1(π) = v̄. Altogether, ΣV(π) weakly rises from the origin at

increasing rates, and thus ΣV is superadditive and its secant must rise: (ΣV/π)
′ ≥ 0. But

then, ΣV must be elastic, i.e., Eπ(ΣV) ≥ 1. Therefore, |Eπ(Σ)| ≥ Eπ(ΣV) ≥ 1. □

Proposition A.1. Suppose that b and ℓ are increasing and that assumption 1 holds. Con-

sider an equilibrium (π∗, σ∗), and let v∗0 ≡ v0(π
∗) and v∗1 ≡ v1(π

∗).

(a) If b(v)/ℓ(v) is concave on [0, v∗0] and g(v) non-decreasing on [0, v∗0], then |Eπ(Σ)| ≥ 1

in equilibrium, provided σ∗ ≤ ΣN(π
∗).

(b) If 1/ℓ(v) is concave on [v∗1, v̄] and g(v) non-increasing on [v∗1, v̄], then |Eπ(Σ)| ≥ 1 in

equilibrium, provided σ∗ ≤ ΣV(π
∗).

Proof (a): First, as in proof of Proposition 4-(a), identity (9) allows to deduce that Eπ(ΣN) is

a lower bound for |Eπ(Σ)|, provided Σ ≤ ΣN. Second, the assumptions on b/ℓ and g(v) imply

that ΣN(π) = G(v0(π)) is of class C1 and convex on [0, π∗]. Since, in addition, ΣN(0) = 0,

it follows that ΣN(π) is superadditive on [0, π∗], and thus (ΣN(π)/π)
′ ≥ 0 for π ∈ [0, π∗].

Finally, it is then straightforward to see that: (ΣN(π)/π)
′ ≥ 0 ⇐⇒ Eπ(ΣN) ≥ 1. □

Proof (b): The proof is analogous: (9) imply that Eπ(ΣV) is a lower bound for |Eπ(Σ)|, as
long as Σ ≤ ΣV. Next, the assumptions on b, ℓ, g imply that ΣV(π) = 1 − G(v1(π)) is of

class C1 and convex on [0, π∗]. Moreover, since v1(0) = v̄, we have ΣV(0) = 0; hence, ΣV(π)

is superadditive on [0, π∗], and so Eπ(ΣV) ≥ 1 in equilibrium. □

A.3.2 Proof of Proposition 5

We will show that each term in the right side of expression (9) is decreasing in t. First,

notice that ΣN(π) = G(v0(π)) is not affected by t, and so an increase in t reduces ratio

ΣN/Σ, since t raises the amount of unverified sharing. Similarly, the ratio (ΣV/Σ) falls as t

rises, since t raises Σ but it lowers ΣV. Next, we verify that Eπ(ΣV) in (10) falls in t.

First, we show that v1(π; t) is supermodular in (π, t). Indeed, as in the proof of Proposi-

tion 4-(b), type v1(π; t) can be written as v1(π; t) = ℓ̃−1(π/t) with ℓ̃(v) ≡ 1/ℓ(v). Moreover,

the map (π, t) 7→ π/t is clearly submodular in (π, t) (negative cross-partial), and increasing

in π and decreasing in t. Consequently, v1(π; t) is supermodular in (π, t) (positive cross-

partial) because it is the composition of a decreasing and concave function (i.e., ℓ̃−1) and a

submodular function that is increasing in π and decreasing in t (i.e., π/t).

Second, since v1(π; t) is increasing in t, it follows that if g/(1− G(v)) is non-increasing,

then the hazard rate g(v1(π; t))/(1−G(v1(π; t))) rises as t falls.
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Altogether, Eπ(ΣV) in (10) must rise as t falls, since it is the product of two positive and

decreasing functions in t, namely, g(v1(π; t))/(1−G(v1(π; t))) and −π∂v1(π; t)/∂π. □

A.4 Proofs of Section 6

In this section, we will show that condition (a) and (b), respectively, imply that the pass-

through curve is sufficiently elastic, i.e., Eπ(Σ) ≥ 1/(1 − π). This, in turn, will allow us

to prove Proposition 6. The next auxiliary result exploits the properties of ΣN and the

conditions in (a) to derive the desired elasticity result.

Proposition A.2. Suppose that b(v)/ℓ(v) is concave, and the density g(v) is increasing. If,

in equilibrium, σ∗ ≤ ΣN(π
∗), then Σ is sufficiently elastic, namely, Eπ(Σ) ≥ 1/(1− π∗).

Proof: First, we characterize v0(π) in (6). To this end, let p(v) := b(v)/ℓ(v) and ς(π) :=

π/(1− π). As in the proof of Proposition 4-(a), v0(π) = p−1(ς(π)) for π ∈ [π0, π̄0], where π0

and π̄0 respectively solve p(0) = π0/(1−π0) and p(v̄) = π̄0/(1− π̄0). (For π < π0, v0(π) = 0.)

Second, we notice that π∗ ∈ (π0, π̄0). Indeed, since σ∗ ∈ (0, 1), we must have π∗ < π̄0;

also, π∗ > π0 as 0 < σ∗ ≤ ΣN(π
∗). Given this, ΣN(π

∗) obeys ΣN(π
∗) = G(p−1(ς(π∗))).

Third, we observe that because p(v) is increasing and concave, its inverse p−1(z) is in-

creasing and convex and satisfies p−1(z) = 0 for z ≤ ς(π0). Thus, for z ∈ (ς(π0), ς(π̄0)),

p−1(z) must have an increasing secant, i.e., (p−1(z)/z)′ ≥ 0, which implies Ez(p−1) ≥ 1.

Likewise, G(v) is increasing and convex with G(0) = 0; thus, by the same logic, Ev(G) ≥ 1.

Fourth, we use that the elasticity of the composition of functions equals the product of

their elasticities. Equipped with this, we compute the elasticity of ΣN(π) at π = π∗, and

then use the bounds previously found to get that ΣN is sufficiently elastic at π = π∗:

Eπ(ΣN) = Ev(G)× Ez(p−1)× Eπ(ς) ≥ Eπ(ς) = 1/(1− π∗).

Finally, since σ∗ ≤ ΣN(π
∗), identity (9) allows us to conclude that |Eπ(Σ)| ≥ Eπ(ΣN), and

so Σ is sufficiently elastic in equilibrium. This concludes the proof. □

As in the result above, we now use condition (b) and properties of ΣV to bound Eπ(Σ).

Proposition A.3. Suppose that 1/ℓ(v) is concave and that the hazard rate g(v)/(1−G(v))

is non-increasing. If σ∗ ≤ ΣV(π
∗) when ϕ = 0, and g(0) > ℓ′(0)/ℓ(0), then there exists t̂ > 0

such that for all verification cost t ∈ (0, t̂), the pass-through curve Σ is sufficiently elastic in

equilibrium: Eπ(Σ) ≥ 1/(1− π∗).
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To prove this proposition, we leverage a pair of claims. The first one examines how t

impacts the equilibrium prevalence π∗(t), and the mass of users who engage in unverified

sharing Σ(π∗(t); t) and verified sharing ΣV(π
∗(t); t), respectively. Since Proposition A.3

focuses on the case in which σ∗ ≤ ΣV(π
∗), we next restrict attention to verification cost

t > 0 for which the equilibrium (π∗, σ∗) satisfies ΣV(π
∗; t) > 0, and thus v1(π

∗; t) < v̄.

Claim A.1. As t increases, π∗(t) and Σ(π∗(t); t) both increase, while ΣV(π
∗(t); t) decreases.

Proof: Given t > 0, we know that π∗(t) must satisfy F (Σ(π∗(t); t)) = π∗(t), or:

Σ(π∗(t); t) := G(v1(π
∗(t); t))−G(v0(π

∗(t))) = F−1(π∗(t)).

By the Implicit Function Theorem, it is immediate to see that:

dπ∗

dt
=

g(v1)∂v1/∂t

(F−1)′ + g(v0)∂v0/∂π − g(v1)∂v1/∂π
> 0,

since ∂v1/∂t > 0 > ∂v1/∂π, ∂v0/∂π ≥ 0, and F ′ > 0. Consequently, dΣ(π∗(t); t)/dt =

(F−1)′dπ∗/dt > 0, since F−1 is strictly increasing.

Next, we examine ΣV(π
∗(t); t) = 1−G(v1(π

∗(t); t)). Differentiating this in t yields:

dΣV(π
∗(t); t)

dt
= −g(v1(π∗(t); t))× dv1(π

∗(t); t)

dt
.

Therefore, the sign of dΣV(π
∗(t); t)/dt depends on that of dv1(π

∗(t); t)/dt. We’ll show that

dv1(π
∗(t); t)/dt > 0. To see this, consider the expression for dπ∗(t)/dt above. Notice that

this expression can be bounded from above by:

dπ∗

dt
=

g(v1)∂v1/∂t

(F−1)′ + g(v0)∂v0/∂π − g(v1)∂v1/∂π
< − g(v1)∂v1/∂t

g(v1)∂v1/∂π
= − ∂v1/∂t

∂v1/∂π
.

This last inequality effectively implies that v1(π
∗(t), t) must increase in t, since:

dπ∗

dt
< − ∂v1/∂t

∂v1/∂π
⇐⇒ dv1(π

∗(t); t)

dt
=
∂v1
∂π

× dπ∗

dt
+
∂v1
∂t

> 0.

As a result, dΣV(π
∗(t); t)/dt < 0. □

The next claim shows that the equilibrium prevalence vanishes as verification costs vanish.

Claim A.2. π∗(t) → 0 as t→ 0.
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Proof: By contradiction, suppose that limt↓0 π
∗(t) = π̃ > 0. Since π∗(t) is an equilibrium:

G(v1(π
∗(t); t))−G(v0(π

∗(t))) = F−1(π∗(t)).

Taking the limit as t→ 0, we see that

G

(
lim
t↓0

v1(π
∗(t); t)

)
−G

(
lim
t↓0

v0(π
∗(t))

)
= F−1(π̃) > 0,

where we have used the continuity of G and F , as well as the fact that F is strictly increasing.

Furthermore, because G is also strictly increasing, we must have:

lim
t↓0

v1(π
∗(t); t) > lim

t↓0
v0(π

∗(t)).

But v0(·) in (6) is continuous, since it is the generalized inverse of a continuous function.

Thus, limt↓0 v0(π
∗(t)) = v0(π̃). Next, we notice that v1(π

∗(t); t) ∈ (0, v̄), since Σ,ΣV > 0.

Thus, v1(π
∗(t); t) in (6) satisfies:

π∗(t)ℓ(v1(π
∗(t); t)) = t.

Taking the limit as t→ 0, and using that ℓ is continuous, we get

ℓ

(
lim
t↓0

v1(π
∗(t); t)

)
= 0.

Since ℓ(0) ≥ 0, it follows that limt↓0 v1(π
∗(t); t) ≤ 0. But this is a contradiction because it

implies that v0(π̃) < 0. We conclude that limt↓0 π
∗(t) = 0. □

Proof of Proposition A.3: First, by Claim A.2, limt↓0 v1(π
∗(t); t) = limt↓0 v0(π

∗(t)) = 0;

thus, limt↓0Σ(π
∗(t), t) = 0 and limt↓0ΣV(π

∗(t), t) = 1. Hence, by continuity, Σ(π∗(t), t) <

ΣV(π
∗(t), t) for small enough t > 0. On the other hand, no one verifies when t is too high,

i.e.: ΣV(π
∗(t), t) = 0 < Σ(π∗(t), t)).25 Moreover, by Claim A.1, ΣV(π

∗(t), t) falls in t while

Σ(π∗(t), t) rises in t. Since these functions are continuous and monotone, the Intermediate

Value Theorem ensures the existence and uniqueness of t̂0 > 0 such that for all 0 < t ≤ t̂0,

Σ(π∗(t), t) ≤ ΣV(π
∗(t), t).

25Easily, if t is such that t/ℓ(v̄) = b(v̄)/ℓ(v̄)/(1 + b(v̄)/ℓ(v̄)) then no type finds it optimal to verify news.
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Second, we prove that the π-elasticity of ΣV(π; t) evaluated at π = π∗(t), i.e., the mapping

t 7→ Φ(t) :=
π∂ΣV(π; t)/∂π

ΣV(π; t)

∣∣∣∣
π=π∗(t)

is decreasing in t. Since ΣV(π; t) = 1−G(v1(π; t)), with v1(π; t) in (6), it follows that Φ(t)

can be written as:

Φ(t) =
g(v1(π

∗(t), t))

1−G(v1(π∗(t), t))
× ℓ(v1(π

∗(t), t))

ℓ′(v1(π∗(t), t))
.

Thus,

Φ′(t) =

(
g(v1)

1−G(v1)

)′
dv1
dt

× ℓ(v1)

ℓ′(v1)
+

g(v1)

1−G(v1)
×
(
ℓ(v1)

ℓ′(v1)

)′

× dv1
dt
.

Since g/(1 − G) is decreasing, ℓ′/ℓ is increasing (as 1/ℓ is concave26), and dv1/dt > 0, we

have that Φ′(t) < 0. Moreover, because limt↓0 v1(π
∗(t); t) = 0, it follows that

lim
t↓0

Φ′(t) = g(0)× ℓ(0)

ℓ′(0)
.

But this latter expression is strictly greater than one, provided g(0) > ℓ′(0)/ℓ(0). On the

other hand, the mapping t 7→ 1/(1− π∗(t)) is increasing in t, as the equilibrium prevalence

rises as t rises, and obeys limt↓0 1/(1− π∗(t)) = 1, since limt↓0 π
∗(t) = 0 by Claim A.1–A.2.

Altogether, by continuity, Φ(t) > 1/(1− π∗(t)) for small t > 0. We can then define

t̂1 := inf{t ≥ 0 : Φ(t) ≤ 1/(1− π∗(t))},

where, without loss, t̂1 = t̂0 if the above set is empty.

All in all, we have shown that for all t ∈ (0, t̂) with t̂ := min{t̂0, t̂1},

Eπ(Σ) > Eπ(ΣV) ≥
1

1− π∗ ,

where we have used (9) to bound Eπ(Σ). Thus, Σ is sufficiently elastic in equilibrium. □

Equipped with Proposition A.2 and A.3, we are ready to prove Proposition 6.

Proof of Proposition 6: Let π∗(ϕ) denote the equilibrium prevalence given a filter of quality

26Indeed, if 1/ℓ is concave, then −ℓ′/ℓ2 is decreasing in v, i.e., (ℓ′/ℓ) · (1/ℓ) must be increasing. But since
1/ℓ is decreasing, ℓ′/ℓ must be increasing.
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ϕ. As argued in the main text of Section 6, this value is the unique solution to the equation

(1− ϕ)Σ(ψ(π∗(ϕ);ϕ))︸ ︷︷ ︸
Σe(ψ(π∗(ϕ),ϕ))≡

= Π−1(π∗(ϕ)),

where Π−1 is the the upward sloping inverse supply function. Totally differentiating the

above equality with respect to ϕ, we get:

−Σ + (1− ϕ)Σ′
[
∂ψ

∂π
[π∗]′(ϕ) +

∂ψ

∂ϕ

]
= [Π−1]′[π∗]′(ϕ).

Solving for [π∗]′(ϕ) yields:

[π∗]′(ϕ) =
−Σ + (1− ϕ)Σ′ ∂ψ

∂ϕ

[Π−1]′ − (1− ϕ)Σ′ ∂ψ
∂π

Since [Π−1]′ > 0 > Σ′ and ∂ψ/∂π > 0, it follows that the sign of [π∗]′ is fully determined by

the sign of the numerator of the above expression:

Υ(ϕ) ≡ −Σ(ψ(π∗(ϕ);ϕ)) + (1− ϕ)Σ′(ψ(π∗(ϕ);ϕ))
∂ψ

∂ϕ
(π∗(ϕ), ϕ).

Taking the limit of the above expression as ϕ→ 0,

Υ(0) = −Σ(π∗(0))− Σ′(π∗(0))π∗(0)(1− π∗(0)),

where we have used that ψ(π, 0) = π and ∂ψ
∂ϕ
(π, 0) = −π(1 − π). If the conditions given

in (a) hold, then Proposition A.2 ensures that |Eπ(Σ)| ≥ 1/(1 − π∗(0)), and so Υ(0) > 0.

Likewise, Proposition A.3 would ensure the same result, provided the conditions in part (b)

are satisfied. So if either (a) or (b) holds, then a small increase in the filter’s quality leads

to an increase in the equilibrium prevalence π∗(ϕ). Because a change in the filter has no

direct effect on the supply function Π(σe), the new equilibrium is the result of an upward

movement along the supply curve, and hence the new equilibrium displays a higher effective

sharing σe∗ and, thus, a higher diffusion of fake news, ∆∗(ϕ) ≡ π∗(ϕ)σe∗(ϕ). Intuitively, the

small increase in ϕ shifts the effective sharing (1− ϕ)Σ(·) up in the (π, σe)-space around the

point studied. Conversely, as the filter becomes perfect, i.e., ϕ → 1, Σe shifts left towards

the origin, with (π∗(ϕ), σe,∗(ϕ)) → (0, 0) and ∆∗(ϕ) = σe∗(ϕ)π∗(ϕ) → 0.

Finally, we show that equilibrium sharing σ∗ is monotone increasing. To see this, consider

the (π, σ)-space. There, an increase in filter ϕ lowers the posterior ψ(π, ϕ) and so it raises
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the unverified sharing Σ(ψ(π, ϕ)) for every π. At the same time, an increase in ϕ lowers

supply Π((1− ϕ)σ) at every σ. Thus, the sharing rate σ∗ unambiguously rises. □

A.5 Proofs of Section 7

A.5.1 Proof of Proposition 7

Take 0 <
˜
π < π̃ < 1, π ∈ (

˜
π, π̃) and suppose that Σ(π) < Σco

˜
π,π̃(π). By Carathéodory’s

Theorem (e.g., Theorem 17.1 in Rockafellar, 1970), there exists λ ∈ (0, 1) and prevalence

πA, πB ∈ [0, 1] such that λπA + (1 − λ)πB = π and Σco

˜
π,π̃(π) = λΣ(πA) + (1 − λ)Σ(πB) with

πA, πB ∈ [
˜
π, π̃]. Without loss of generality, assume πA < π < πB. As explained in the main

text, the monopolist can induce πA and πB by choosing segment sizes ω and 1 − ω for A

and B, respectively; and also, by sending an extra amount τ of truthful news to segment

A, with τ ≥ 0. Following the steps outlined in the main text, since the variables (λ, πA, πB)

are already fixed by the concavification (given π), it follows that the pair (ω, τ) adjusts to

induce the desired prevalence (πA, πB):

πA =
λπ

λπ + (1− π)ω + τ
and πB =

(1− λ)π

(1− λ)π + (1− π)(1− ω)
.

Using that λ = (πB − π)/(πB − πA), it is simple to see that the above system of equations

has a unique solution given by:

ω =
(πB − π)(πB − πA + π(1− πB))

πB(1− π)(πB − πA)
∈ (0, 1) (A.2)

τ =
(π − πA)(πB − π)

πAπB
∈ (0,∞). (A.3)

Moreover, any prevalence π for which Σ(π) = Σco

˜
π,π̃(π) can be trivially implemented by

setting segment sizes ω = λ and τ = 0 so that πA = πB = π.

Finally, if the equilibrium under uniform policies π∗ ∈ (
˜
π, π̃) and satisfies Σ(π∗) <

Σco

˜
π,π̃(π

∗), then the above segmentation strategy yields strictly higher revenues, since

λπ∗Σ(πA) + (1− λ)π∗Σ(πB) = π∗Σco

˜
π,π̃(π

∗) > π∗Σ(π∗).

This can make the segmentation strategy more profitable than a uniform policy. □

43



A.6 Additional Figures

Increasing benefits and decreasing losses (Section 4.1). The figure below depicts

the case in which both sharing benefits and losses are decreasing in v. Observe that rigidities

in the pass-through curve to decreases in verification costs emerge not only at low prevalence

levels, but also at high ones.

Figure 9: In both panels, we use the same parameters as in Figure 3 (right panel). With decreasing
losses, the propensity to skip verification t/ℓ is an increasing function. Thus, high types are more
prone to prefer unverified to verified sharing. As verification cost t falls (from t = 1.2 to t = 0.83),
the pass-through curve Σ contracts for mid prevalence π levels.

Non-monotone losses (Section 4.2). In this case, multiple crossing points between both

propensity functions can arise. As a result, (i) there could be multiple disconnected intervals

of verification, or (ii) existing intervals could feature more types engaging in verification.

Specifically, consider Figure 10 below: Without loss of generality, we preserves the mono-

tonicity of the propensity-to-share function but introduce a non-monotonic t/ℓ. In the top

row, two crossing points for low prevalence levels (left panel) generate a single region of con-

traction (right panel); in the middle row, with a second crossing point, a second disconnected

region of sensitivity appears for high π; and in the bottom panel, as high types exhibit larger

losses and t/ℓ decreases more, both regions connect and a subset of the original one exhibits

more verification.
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Figure 10: Non-monotone losses. Multiple intersections could lead to multiple disconnected ver-
ification regions (middle panel), and existing ones could exhibit more verification and become
connected (bottom panel).
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