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Abstract

We develop a search-theoretic model, in which a police agency allocates scarce

resources across neighborhoods — heterogeneous in “vigilance” and valuables — to

minimize crime, while potential criminals decide whether, and if so, when and where

to commit a crime. When criminals sequentially search for the best target, the optimal

police allocation depends on the difference in vigilance levels across neighborhoods, pri-

oritizing neighborhoods with low vigilance. However, in the absence of criminal search,

the optimal allocation depends on the degree of rent inequality among neighborhoods,

with a priority placed on neighborhoods with higher rents. We also identify conditions

under which policing all neighborhoods equally is optimal. Our findings underscore

that an optimal policing design must not only consider neighborhood characteristics

but also other factors that may impact criminals’ decision-making, including whether

they engage in active search.
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1 Introduction

Recent estimates indicate that the US spends around 150 billion dollars annually on police

protection — an amount that has risen around 21% over the last decade (Anderson, 2021).

Lately, as part of its 2023 budget, President Biden’s administration requested a fully paid-for

new investment of approximately $37 billion to support law enforcement and crime preven-

tion.1 The landmark paper of Becker (1968) predicts that an increase in police resources

should lead to less crime. The logic follows from analyzing the decision-making of potential

criminals, who compare the expected utility of committing a crime to their outside option;

therefore, policing has a deterrent effect since it intuitively makes the outside option relatively

more attractive. Understanding the deterrent effect of policing is an important question in

the empirical literature; see, e.g., Chalfin and McCrary (2017) for a comprehensive survey.

An important assumption that Becker’s model relies on is that the outside option equals

the utility of abstaining from crime. Yet, it is possible that a potential offender’s outside

option reflects the possibility of committing a crime elsewhere. Thus, increasing policing in

one area may just lead to more crime somewhere else, resulting in a phenomenon known

as displacement.2 Recent estimates indicate that displacement effects can be quite large:

Maheshri and Mastrobuoni (2020) find that an extra guard lowers the likelihood a bank is

robbed by 35% to 40%, with over half of this reduction being displaced to nearby unguarded

banks. Likewise, Blattman et al. (2021) worked with the city of Bogotá (Colombia) to design

a large security experiment that randomly assigned double police patrol time to “hot spot”

streets, finding that crime mildly decreased on the treated streets but increased on nearby

streets, especially for property crime.3,4 These findings indicate that (i) potential criminals

contemplate many crime targets before making a decision; and (ii) lowering the payoff of one

potential crime target (e.g., with more policing) may simply make other ones more enticing.

In this paper, we ask: how should scarce policing resources be allocated across many

potential crime targets if the goal is to reduce crime? To this end, we develop a model of

1https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/01/

fact-sheet-president-bidens-safer-america-plan-2/.
2The criminology literature has also argued that increased policing in a particular area could lead to less

crime in nearby areas through diffusion of benefits, e.g., an increase in deterrence beyond the targeted area
(Weisburd and Telep, 2014). This channel, while certainly plausible, is not supported empirically by the
most recent economics literature (e.g., Maheshri and Mastrobuoni, 2020; Blattman et al., 2021).

3Property crime is intuitively the one most responsive to incentives. Also, it constitutes around two-thirds
of total crime in the US and Europe (Buonanno et al., 2011).

4Aside from spatial displacement, Vollaard (2017) provides empirical evidence that marine oil pollution
crimes are temporally displaced to night times when the probability of conviction is lower due to technology
constraints. Yang (2008) examines tactical displacement in the context of customs reform in the Philippines,
finding evidence that increasing enforcement in customs against a particular method of avoiding import
duties lowers the targeted method but substantially raises an alternative duty-avoidance method.
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policing and crime that accounts for both deterrence and displacement. We consider a unit

mass of potential criminals, and a finite but arbitrary number of “neighborhoods” to represent

that potential criminals can choose not only whether to commit a crime, but also where and

(possibly) when to do so. We assume neighborhoods differ across several dimensions. First,

they vary by their private vigilance levels.5 Specifically, each neighborhood may or may

not be privately protected (high vs. low vigilance). If not protected, then an attempted

crime succeeds (e.g., a criminal successfully breaks into a house and steals the victim’s

property); otherwise, it fails. The prior failure chance of an attempted crime is specific to

the neighborhood. Second, neighborhoods differ by their potential criminal rewards, namely,

the amount that the criminal can steal if successful.6 Finally, on top of vigilance, a police

agency allocates a fixed amount of policing resources across these neighborhoods to minimize

total crime, namely, the sum of crime rates across neighborhoods. We model policing as a

crime deterrent:7 from the criminals’ perspective, attempting a crime triggers the event of

being apprehended, and thereby punished. The chance of this latter event, i.e., the capture

probability, increases with the policing resources allocated to the neighborhood.

We examine subgame-perfect equilibria, in which the police agency allocates policing

resources to minimize total crime, and then potential criminals choose whether and, if so,

where to attempt a crime. We study two polar cases, aiming to reflect the potential criminals’

“modus operandi.” In our leading criminal-search case, we consider criminals who can costly

acquire information about neighborhoods before deciding whether to attempt a crime or not.

This sequential decision process leads to an additional choice of not only whether and where

to attempt a crime but also when to do so.8 In the no-criminal-search case, the latter decision

is absent, reflecting a prohibitively costly information acquisition process, which may owe to

lack of criminal expertise, or to security measures being hard-to-detect by criminals. The

analysis of these two cases lead to qualitatively different results on how police resources

should be allocated. From a technical perspective, the two cases are not isomorphic to

5Anderson (2021) estimates that the US spends around $113 billion annually on private security measures
such as security systems ($54.8 billion), safety lightning ($14 billion), locks, safes, vaults, and locksmiths
($10.5 billion), protective fences ($3.5 billion), and guards and patrol ($30.6 billion).

6Using detailed data on stolen property goods and prices in the UK, Draca et al. (2019) provides evidence
that property crime is responsive to the rewards of crime, adjusting relatively fast to changes in these ones.
In the US, transfers from victims to criminals are of the order of $3.6 billion for household theft, $2.4 billion
for household burglary, and $1.1 billion for motor vehicle theft (Anderson, 2021).

7In practice, the act of policing involves responding to calls for service, engaging in patrol, and inves-
tigating crimes (Owens, 2020). Using detailed geographic data on patrol cars in Dallas, Weisburd (2021)
documents that police presence, or patrolling, has a significant impact on criminal behavior. Policing may
also involve direct interactions with citizens, perhaps at a social cost (e.g., the stop-and-frisk program in
New York); see Manski and Nagin (2017) for a policing model that focuses on confrontational tactics.

8The criminology literature suggests that most burglars are experts and follow a sequential decision-
making process (Nee and Meenaghan, 2006).
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each other and call for different solution approaches, which highlights the different nature of

trade-offs faced by the police agency depending on whether criminals engage in search.

More precisely, our leading case takes the form of a sequential search problem for the

criminal. Specifically, upon paying an inspection cost, a potential criminal can observe both

whether a neighborhood is privately protected and whether it is policed. After learning the

neighborhood state, the criminal can choose to: (i) commit a crime; (ii) move on to another

neighborhood; or (iii) return to a previously explored one. As a result, a potential criminal’s

strategy consists of an action plan that specifies where to start the search (selection rule)

and when to end it (stopping rule).9 We leverage results from the sequential search literature

(Weitzman, 1979); in particular, we solve the criminals’ decision problem in two steps. First,

we apply Weitzman’s optimal search rule, which consists of sorting neighborhoods from top

to bottom according to some “indexes,” and then proceeding sequentially until the realized

payoff in a neighborhood exceeds both the indexes in all not inspected neighborhoods and

the highest realized payoff seen so far.10 Second, we use recent advances in the consumer

search literature (e.g., Choi et al., 2018) to recast the criminal search problem as a discrete

choice problem, allowing us to tractably compute the crime rate in each neighborhood as a

function of the policing allocation and the optimal criminal search strategy.11

To characterize the criminals’ optimal search behavior, we focus on settings in which

criminals’ reservation utility from non-crime related activities is not too low so that criminals

can potentially be deterred from crime. Likewise, to ensure that all neighborhoods are

attractive to the criminal before the search takes place, we posit that the inspection cost

relative to the criminal reward is low enough in all neighborhoods. That said, we find

that criminals rank a neighborhood higher if it has a higher chance of being unprotected

and unpoliced, and if it offers higher rewards. Thus, all else equal, increasing policing in one

neighborhood would naturally displace crime to other neighborhoods by lowering its ranking.

As for stopping, criminals find it optimal to commit a crime as soon as they encounter an

unprotected and unpoliced neighborhood (Proposition 1); otherwise, the search continues.

If all neighborhoods are policed and protected, then the criminal is effectively deterred.

9Thus, given a police allocation, the criminals’ behavior is effectively predictable. Recently, using detailed
micro-level data on commercial robberies against businesses in Milan (Italy), Mastrobuoni (2020) documents
that robbers (who are believed to be professional criminals) display predictable behavioral patterns.

10In Weitzman (1979), a searcher faces a pool of boxes, each having an uncertain payoff drawn from an
exogenous distribution. The searcher can open a box at a cost to learn its payoffs, and then choose whether
to stop, recall, or keep searching. From a theoretical viewpoint, a novelty of our work is that information is
endogenous: the distribution of payoffs for each box depends on the chosen policing allocation.

11In the ordered search literature (e.g., Armstrong, 2017), the non-stationary consumer search problem is
transformed into a discrete choice problem to compute market shares. This approach has been proven useful
to guide empirical work in industrial organization (e.g., Moraga-González et al., 2023).
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We leverage the optimal criminal search rule to transform the problem into a discrete

choice one (Proposition 2). We show that, given a policing allocation, the crime rate in

neighborhood n equals the chance that all neighborhoods inspected before it were either

policed or protected times the chance that neighborhood n is not (Lemma 2). This highlights

that the crime rate in a neighborhood not only depends on its own vigilance and policing

levels but also on the vigilance and policing levels of all neighborhoods inspected beforehand.

Having determined the crime rates in each neighborhood, we then turn to our main goal:

the optimal allocation of scarce policing resources. The problem of the police agency can be

seen as minimizing the sum of crime rates, subject to a resource constraint that the sum of

resources allocated to each neighborhood cannot exceed an exogenously fixed amount. A key

challenge in this optimization problem is that a policing allocation impacts the criminal’s

optimal selection rule, which, in turn, affects the crime rates in all neighborhoods. To address

this obstacle, we consider a probabilistic reformulation of the problem and show that the

total crime rate can be seen as the probability that there is a “success” among a fixed

number of independent, albeit heterogeneous trials (Proposition 3). We prove that the total

crime rate is unaffected by the order by which neighborhoods are inspected. Thus, the police

agency problem can be recast as maximizing the total deterrence rate — the probability that

all neighborhoods are either policed or protected — subject to the aforementioned resource

constraint. This yields a well-behaved non-linear programming problem, which can be solved

in closed-form using standard tools (Proposition 4).

We find that optimal police allocation depends on the degree of vigilance inequality across

neighborhoods. Indeed, if (and only if) all neighborhoods are equally protected in the sense

of having the same vigilance level, the optimal policing allocation is fair : all neighborhoods

are policed at the same intensity (Corollary 1). Otherwise, the optimal allocation entails

selection: only a subset of neighborhoods are policed, namely those with low vigilance, result-

ing in a compensating effect of public policing for private vigilance. In general, to determine

whether neighborhood n should be policed, the police agency must compare a fair division of

available resources against the average vigilance gap between n and all neighborhoods with

lower vigilance than n. Neighborhood n is policed if and only if the fair division exceeds

this gap. As for the policing intensity (within policed neighborhoods), the optimal allo-

cation satisfies the familiar “bang-per-buck” principle from consumer theory: the increase

in deterrence in a neighborhood owed to a one-unit increase in policing must be the same

across all policed neighborhoods. Thus, a compensation scheme follows: the police agency

allocates a fair share of resources to each neighborhood minus/plus an amount that equals

the excess/deficit in vigilance of the neighborhood compared to the average.

Finally, we fully solve the no-criminal-search case. There, potential criminals just choose
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whether and where to attempt a crime by comparing the ex-ante profits from crime (ex-

pected rewards minus expected penalty) associated with each neighborhood. We show that,

in equilibrium, policed neighborhoods are those that offer the highest expected profits to

criminals (Lemma 3); moreover, the set of policed neighborhoods must have the property

that adding a neighborhood to or removing it from this set would induce criminals to at-

tempt a crime elsewhere (Proposition 5). Contrary to the criminal-search case, the optimal

policing equalizes expected criminal profits across policed neighborhoods, rather than the

bang-per-buck. Thus, the optimal policing depends critically on the amount of inequality in

the expected rewards across neighborhoods, which we refer to as rent inequality.

In particular, fair policing is optimal only when all neighborhoods offer the same rents

(i.e., expected rewards) to criminals (Corollary 2); otherwise, the optimal policing increas-

ingly allocates resources to neighborhoods with higher rents. This holds even if all neighbor-

hoods share the same vigilance levels. As in the criminal-search case, the optimal policing

assigns a fair share of resources to each policed neighborhood minus/plus an amount that

is proportional to the excess/deficit in rents of the neighborhood compared to the average

(Proposition 6). This means that policed neighborhoods with low/high rents (relative to the

average) are allocated less/more than a fair share of resources.

We organize the paper as follows. Section §2 reviews the literature and §3 sets up the

model. In §4 we characterize the optimal criminal search. Sections §5 and §6 characterize

the optimal policing allocation for the search and no-search case, respectively. We conclude

in §7. All omitted proofs and analyses are in the Appendix.

2 Literature Review

Our paper relates to several strands of the literature. First, as we study policies aimed at

minimizing crime, our work relates to the normative theoretical literature on the public en-

forcement of the law; see, e.g., Garoupa (1997) and Polinsky and Shavell (2000) for excellent

surveys. This literature considers an enforcement authority that chooses both the capture

chance and the punishment size to maximize a social welfare function, and it mostly focuses

on deterrence by extending Becker (1968), abstracting from displacement considerations. In

contrast, in our paper (i) criminals choose among many crime targets; and (ii) penalties are

fixed from the outset. This unveils the type of neighborhood data that is needed to improve

the allocation of police resources to decrease crime, and also how the optimal allocation de-

pends on the criminals’ operation practices, which, to our knowledge, is new in the literature.

Second, our work contributes to literature that analyzes the interaction between the police
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and potential criminals. Eeckhout et al. (2010) examine optimal policing strategies that

minimize crime and find that random crackdowns, or publicly announcing to police identical

groups at different intensities, can be optimal. Persico (2002) examines a model in which two

groups of heterogeneous citizens can be policed at different rates, and provides conditions

under which fair policing (i.e., policing both groups at the same intensity) minimizes crime.

Fu and Wolpin (2018) develop a general model of crime, in which there is an arbitrary

number of neighborhoods (cities), a continuum of potential criminals (citizens), and a police

agency (government) in each city that acts as a Stackelberg leader. A key distinction is that

neighborhoods are modeled as closed economies in their paper, impeding criminals to move

across them, which is a feature that lies at the heart of our framework.

A growing literature examines theoretically how crime can move across potential crime

targets. Draca et al. (2019) develop a model in which potential criminals choose one of two

goods to steal and can switch depending on the capture probabilities associated with each

good. In a model with an arbitrary number of heterogeneous potential crime targets, Helsley

and Strange (2005) study the displacement effect of vigilance and the substitution between

vigilance and policing using a game-theoretic framework. Their model is rich in that both

vigilance and policing are endogenous; however, it assumes that all targets are policed at

the same intensity, which we show only occurs in very specific circumstances. There is a

related literature that examines how individual vigilance choices may displace crime to other

potential victims; see, e.g., Vásquez (2022) and references therein.12

Finally, our work connects to the literature that incorporates search features into crime

models. In labor markets, crime can be seen as an alternative to formal work. Burdett

et al. (2003, 2004), Huang et al. (2004), and Engelhardt et al. (2008) incorporate crime

into a job search model where agents search for jobs while facing opportunities to commit

a crime. İmrohoroğlu et al. (2004) develop a dynamic model in which heterogeneous agents

face stochastic employment opportunities and decide whether to engage in criminal activities

based on their employment status. With a focus on how criminals’ discount factors interplay

with deterrence policies, Lee and McCrary (2017) develop a stationary search model a la

McCall (1970) with exogenous policing, in which potential criminals face a single criminal

opportunity in every period and decide whether to take it or wait for a better draw. The

question of optimal policing is absent in this body of work.

12Draca and Machin (2015) provides a recent survey of the empirical literature. Recently, Matheson et al.
(2023) examine how the rise of working from home (during and after the UK lockdown in 2020) impact
burglaries, finding that burglaries relocated to neighborhoods with low rates of working from home.
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3 The Model

Consider a unit-mass continuum of potential criminals. There is a finite number of neighbor-

hoods n ∈ N = {1, . . . , N}, with N > 1, to potentially commit a crime. Each neighborhood

n can be either privately protected, policed, or both. The respective prior probabilities that

n is protected and policed are φn ∈ [0, 1) and pn ∈ [0, 1]. A crime attempted in a privately

protected neighborhood is guaranteed to fail, while it leads to a sure arrest in a policed neigh-

borhood. Thus, φn and pn can be seen as the failure chance of an attempted crime in n and

the probability of being caught by the police in n, respectively.13 Whether a neighborhood is

policed, protected, or both is unknown to the criminal without inspection. Hence, from an

ex-ante perspective, if a criminal attempts a crime in neighborhood n, then he succeeds and

is not arrested with chances 1 − φn and 1 − pn, respectively. If the criminal succeeds, then

he obtains a reward rn > 0; however, if he is captured by the police, he pays a fine f > rn.

Lastly, if the criminal fails and is not captured, he gets gn < rn. Criminals are risk-neutral

and have a non-crime related outside option u0. Henceforth, we fix u0 = gn = 0 for all n.14

Following the sequential search literature (Weitzman, 1979), criminals search for the best

neighborhood to commit a crime. Specifically, after paying an inspection cost c > 0, the

criminal learns whether the neighborhood is policed or protected. That is, after inspect-

ing n, the criminal learns what would happen if a crime were committed in neighborhood n.

Equipped with this information, the criminal then chooses whether to (i) commit a crime,

(ii) inspect another neighborhood, (iii) return to a previously inspected neighborhood,15 or

(iv) take the outside option.16 For instance, if the criminal learned that neighborhood n

is privately protected but unpoliced, then he would know that an attempted crime would

lead to a failure without being caught by the police; hence, in such event, the criminal may

wish to carry out a crime in a different neighborhood.17 The crime rate in neighborhood n,

denoted by κn ∈ [0, 1], is the chance that a crime is committed in n.

13More specifically, we envision the probability of being caught and failure probability in neighborhood n
as random variables with respective averages pn and φn. From this viewpoint, the model assumes that these
random variables take values 0 and 1. This simplification not only renders the model tractable, but also it
let us provide a clean comparison between the search and no search cases, which is one of our main goals.

14Our results immediately generalize to settings in which u0 ≥ max{rn − f, gn} so that criminals are
sensitive to both vigilance and policing. However, u0 cannot be too high to avoid eliminating their incentives
to search. To ease the exposition of the paper and reduce notation, we let u0 = gn = 0 for all n.

15As standard, the cost of re-visiting a previously inspected neighborhood is zero (costless recall).
16See Doval (2018) for a general analysis of the case in which the searcher can also choose to take any unin-

spected box without costly learning its payoff first. This, in general, makes the search problem intractable.
In Section §6, we examine the opposite polar case, in which it is prohibitively costly (or simple infeasible)
to inspect a neighborhood prior to committing a crime.

17Our results immediately generalize to settings in which there is residual uncertainty about the failure
chance of an attempted crime after the neighborhood has been inspected by the criminal.
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The interaction transpires in stages. First, the police agency chooses a policing allo-

cation (pn)n∈N to minimize the total crime rate
∑

n∈N κn subject to a resource constraint∑
n∈N pn ≤ p̄ with p̄ ∈ (0, 1) denoting the available policing resources. Second, each poten-

tial criminal chooses a strategy consisting of where to start the search (selection rule) and

when to end it (stopping rule). We study subgame perfect Nash equilibria of this interaction.

4 Optimal Criminal Search

To solve the criminals’ problem, we apply Weitzman’s optimal search rule. This requires

finding reservation indexes zn for each neighborhood n ∈ N . Following Weitzman (1979),

the reservation index zn must solve the following recursive equation:

zn = −c+ max{zn, rn}(1− φn)(1− pn) + max{zn, rn − f}(1− φn)pn

+ max{zn, 0}φn(1− pn) + max{zn,−f}φnpn. (1)

To understand (1), suppose the criminal has a choice between inspecting neighborhood n,

or getting a sure payoff zn from a hypothetical neighborhood that has already been inspected.

Notice that the right-hand side of (1) denotes the expected payoff of inspecting n, keeping

the option to revisit this hypothetical neighborhood and obtain zn. Thus, equation (1) de-

termines the reservation index zn, namely, the value of zn that makes the criminal indifferent

between (i) getting zn immediately, and (ii) inspecting neighborhood n with the possibility

of recalling zn after observing the inspection outcome in n.

Of course, if inspection cost c is too high, the criminal will never choose to keep searching;

also, because criminals have an outside option, each will consider committing a crime in n

as long as zn ≥ 0. We henceforth restrict the model parameters to satisfy:

Assumption 1. Parameters (φn, rn, c, p̄) satisfy c < rn(1− φn)(1− p̄) for all n ∈ N .18

The next lemma characterizes the reservation indexes zn for all neighborhoods n.

Lemma 1. The reservation index associated with neighborhood n obeys zn ∈ (0, rn) and:

zn =
−c+ rn(1− φn)(1− pn)

(1− φn)(1− pn)
. (2)

Assumption 1 ensures that, for each neighborhood n, the reservation index zn is strictly pos-

itive and less than the reward rn, i.e., zn ∈ (0, rn). Thus, criminals find all neighborhoods

18The search cost c could depend on n, as long as we impose that cn < rn(1− φn)(1− p̄) for all n ∈ N .
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more attractive than the outside option from an ex-ante viewpoint, i.e., prior to search.19 No-

tice that index zn exhibits natural properties: it increases with reward rn, and decreases with

capture probability pn and failure chance φn. In other words, criminals rank neighborhoods

higher if they have lower failure rates or capture probabilities, and higher rewards.

The next proposition characterizes the optimal criminal search behavior.

Proposition 1 (Weitzman, 1979). The optimal criminal behavior is as follows:

(a) Selection rule: The criminal inspects neighborhoods in descending order of zn.

(b) Stopping rule: The criminal commits a crime as soon as he finds an unprotected and

unpoliced neighborhood; otherwise, he stops and takes the outside option.

When the neighborhood is neither policed nor protected, the criminal gets rn which is

higher than the reservation index zn and, by the search rule, higher than the reservation

indexes of all remaining unsearched neighborhoods. Hence, the search terminates as soon as

the inspected neighborhood is unpoliced and unprotected. Also, although the criminal can

return to a previously inspected neighborhood, this decision yields a payoff that is at most

equal to the outside option; hence, either the criminal keeps searching or abstains from crime.

Having explained how criminals optimally search for crime targets, we turn to the deter-

mination of crime rates. Following recent advancements in the consumer search literature

(see, e.g., Choi et al., 2018), we recast our sequential criminal search problem as a discrete

choice one. To this end, let un denote the realized payoff in neighborhood n ∈ N , where

un ∈ {−f, rn − f, 0, rn}. Also, define wn := min{un, zn} for each n ∈ N .

Proposition 2. Given (ui, zi)i∈N , a crime is committed in neighborhood i if and only if

wi > 0 and wi > wj for all other neighborhoods j 6= i.

Proposition 2 is useful in that it provides a straightforward way to compute crime rates κn.

Indeed, define Un as the discrete random variable with probability density function (PDF):

P(Un = un) =



(1− pn)(1− φn) un = rn;

pn(1− φn) un = rn − f ;

(1− pn)φn un = 0;

pnφn un = −f.

19If Assumption 1 fails for some neighborhood k, e.g., c > rk(1 − φk), then it is easy to show that the
reservation index zk < 0; thus, search optimality implies that criminals would never choose to inspect k since
u0 > zk. So, Assumption 1 simplifies the search problem: the outside option is potentially taken only after
all neighborhoods have been inspected, rather than an endogenous subset of them.
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Likewise, let Wn := min{Un, zn} denote the truncated random variable. Therefore, the crime

rate κn in neighborhood n is given by the probability of the following event:

κn = P(Wn > 0,Wn > Wj ∀j 6= n).

The next lemma provides a sharp, yet intuitive, characterization of the crime rates κn, n ∈ N .

Lemma 2. Given indexes (zn)n∈N , the crime rate in neighborhood n is given by:

κn = (1− pn)(1− φn)
∏

j:zj≥zn

(1− (1− pj)(1− φj)). (3)

Notice that the expression for the crime rate κn has a natural structure. Since the crim-

inal continues searching whenever the neighborhood inspected is either policed or privately

protected, κn equals the probability that all neighborhoods ranked higher than n are either

policed or protected but neighborhood n is not. Consequently, the crime rate in neighbor-

hood n not only depends on its own levels of vigilance φn and policing pn, but also on the

vigilance and policing levels of all the neighborhoods that are more attractive than n.

5 Optimal policing with criminal search

Having explained how crime rates are determined in each neighborhood, we now turn to the

allocation of policing. To this end, let p ∈ [0, 1]N denote a policing allocation. As previously

explained, the crime rate in each neighborhood n (i.e., κn in (3)) depends on the criminal

selection rule which, in turn, depends on the reservation index profile z(p) := (zn(pn))n∈N

in (2). That said, the police agency chooses p to solve:

min
(pn)n∈N

∑
n∈N

κn(p, z(p))

s.t.
∑
n∈N

pn ≤ p̄

pn ≥ 0 ∀n ∈ N

Because the optimal criminal selection rule is endogenous to the policing allocation,

solving the problem above is not straightforward. In principle, a small change in policing

can alter the whole distribution of crime across neighborhoods. Our next result shows that

although the amount of crime in each neighborhood effectively depends on the criminal search

behavior, the total crime rate does not. For some intuition, consider the example below.
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Example 1. There are two neighborhoods, 1 and 2. Observe that if the policing allocation

encourages criminals to search neighborhood 1 first (i.e., z1 > z2), then the total crime is:

(1− φ1)(1− p1)︸ ︷︷ ︸
crime rate in neighborhood 1

+ (1− φ2)(1− p2)(1− (1− φ1)(1− p1))︸ ︷︷ ︸
crime rate in neighborhood 2

.

Conversely, if criminals search neighborhood 2 first (i.e., z2 > z1), the total crime rate is:

(1− φ2)(1− p2)︸ ︷︷ ︸
crime rate in neighborhood 2

+ (1− φ1)(1− p1)(1− (1− φ2)(1− p2))︸ ︷︷ ︸
crime rate in neighborhood 1

.

Notice that the total crime rate — namely, the sum of crime rates in neighborhoods 1 and 2

— is the same in each case. This owes to a novel spillover effect across neighborhoods:

if neighborhood 1 becomes less attractive (e.g., r1 decreases), then the crime rate at this

neighborhood falls, displacing crime to neighborhood 2 in exactly the same amount, leaving

the total crime rate unchanged. Altogether, the total crime rate does not depend on which

neighborhood is searched first by criminals. In fact, this feature holds in general. �

Proposition 3. Fix a probability space (Ω,F ,P), and define for each n ∈ N independent

random variables Xn : Ω → {0, 1} with Xn(ω) = 1 if neighborhood n is unprotected and

unpoliced, and Xn(ω) = 0 otherwise. Let An = {ω ∈ Ω : Xn(ω) = 1} with probability

P(An) = (1− φn)(1− pn). Then, the total crime rate can be expressed as:

∑
n∈N

κn(p, z(p)) = P

(⋃
n∈N

An

)
. (4)

Proposition 3 suggests that the total crime rate can be seen as the probability of a single

“success” — namely, finding an unpoliced and unprotected neighborhood — among a fixed

number of heterogeneous and independent trials. Consequently, given policing allocation p,

the total crime rate is not influenced by the specific sorting of neighborhoods (selection rule).

Equipped with Proposition 3, we can provide a tractable and closed-form expression for

the total crime rate as a function of p = (pn)n∈N . Indeed, since a crime in neighborhood n

“succeeds” with chance (1−pn)(1−φn) and “fails” with complementary chance pn(1−φn)+φn,

it follows that the total crime rate can be rewritten as:

∑
n∈N

κn(p, z(p)) = 1− P

(⋂
n∈N

Acn

)
= 1−

∏
n∈N

P(Acn) = 1−
∏
n∈N

((1− φn)pn + φn). (5)

Therefore, minimizing the total crime rate is equivalent to maximizing the total deterrence
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rate
∏

n∈N (pn(1 − φn) + φn) — namely, the chance that all neighborhoods searched by

criminals are either policed or protected, thereby inducing the criminal to abstain from

crime. Because the argmax is invariant to monotone increasing transformations, we can

log-transform the total deterrence rate and let the optimal policing allocation p∗ solve:

max
(pn)n∈N

∑
n∈N

log(pn(1− φn) + φn)

s.t.
∑
n∈N

pn ≤ p̄

pn ≥ 0 ∀n ∈ N

Our next result characterizes the optimal policing allocation. Without loss of generality, let

us sort neighborhoods according to their failure rates, so that 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φN < 1.

Proposition 4. Let 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φN < 1. Define the critical neighborhood as:

n∗ = max

{
n ∈ N :

p̄

n
+

1

n

n∑
i=1

φi
1− φi

− φn
1− φn

> 0

}
.

Then, the optimal policing allocation is given by:

p∗n =
p̄

n∗
+

1

n∗

n∗∑
i=1

φi
1− φi

− φn
1− φn

∀n ≤ n∗,

and p∗n = 0 for all neighborhoods n > n∗.

The induced optimization problem is well-behaved in that its objective is a strictly con-

cave function, while the constraints form a convex set. Thus, its unique solution can be found

using standard nonlinear programming methods; see Appendix A.6. The optimal policing al-

location satisfies the familiar “bang-per-buck” principle from consumer theory: the marginal

increase in deterrence in neighborhood n from a one-unit increase in policing pn is the same

across all policed neighborhoods n ≤ n∗; that is, for any pair n, n′ ≤ n∗, the following holds:

1− φn
p∗n(1− φn) + φn

=
1− φn′

p∗n′(1− φn′) + φn′
⇐⇒ p∗n +

φn
1− φn

= p∗n′ +
φn′

1− φn′
. (6)

Hence, the optimal policing intensity in neighborhood n must strictly decrease with its vigi-

lance level φn to maintain its marginal deterrence at par with other policed neighborhoods,

reflecting a substitution effect between policing and vigilance.

Along this latter line, Proposition 4 shows that it could be optimal to police only a
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strict subset of neighborhoods — namely, those with low enough vigilance. In fact, from the

definition of n∗, we see that n∗ ≥ 1, i.e., it is always optimal to police at least the lowest

vigilance neighborhood. As policing resources p̄ increase, more neighborhoods are policed

(i.e., n∗ weakly increases with p̄). Still, since p̄ < 1, policing all neighborhoods need not

occur: using the same definition, we see that it is never optimal to police high-vigilance

neighborhoods when the following condition holds:

p̄ ≤
∑
n∈N

(
φN

1− φN
− φn

1− φn

)
.

This condition is easier to satisfy when: (i) policing resources p̄ are scarce; (ii) the number

of neighborhoods N is large; and (iii) the gap between the highest and lowest vigilance

neighborhoods is sizable. For instance, if the lowest vigilance neighborhood has zero vigilance

(i.e., minn φn = 0) and the highest one has at least 50% vigilance (i.e., maxn φn ≥ 0.5), then

the last policed neighborhood n∗ < N .20 Conversely, when there is no vigilance gap, or

maxn φn = minn φn, then all neighborhoods are policed at the same intensity p̄/N ; that

is, the crime-minimizing allocation is completely fair (Persico, 2002): policing resources are

distributed equally across all neighborhoods. This condition is also necessary.

Corollary 1. The optimal policing allocates an equal share of resources to all neighborhoods,

i.e., p∗n = p̄/N for all n ∈ N if, and only if, all neighborhoods have the same vigilance level

φn = φk for all n, k ∈ N .

Thus, the degree of policing inequality across neighborhoods owes primarily to the vig-

ilance inequality between these ones. Consider two policed neighborhoods, p∗i , p
∗
j > 0. Us-

ing (6), the degree of policing inequality between neighborhoods i and j is given by

|p∗i − p∗j | =
|φj − φi|

(1− φj)(1− φi)
.

Consequently, when the vigilance gap between i and j increases, policing is more unequal

between i and j. In turn, more vigilance inequality leads to fewer policed neighborhoods (n∗

falls) and greater policing inequality within policed neighborhoods.21

20In this case,
∑
n( φN

1−φN
− φn

1−φn
) > 1 > p̄, implying that policing all neighborhoods is suboptimal.

21Welfare losses from employing a simple and fair allocation are small when the number of neighborhoods
is large, since deterring crime is hard when there are too many alternatives to the criminals. However, losses
need not be small in the opposite case. For instance, let p̄ = 0.8 and consider two unequal neighborhoods
with φ1 = 0 and φ2 = 0.5. The optimal policing entails p∗1 = p̄ and p∗2 = 0, whereas the fair one allocates
p̄/2 to each. The respective total crime (5) for the optimal and fair allocation are 0.6 and 0.72. In other
words, moving from optimal to fair allocation raises crime by 20%.
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Finally, we discuss in more detail which neighborhoods should be policed and, if so, how

much policing each should be allocated. By Proposition 4, the allocation of policing is from

bottom to top: low vigilance neighborhoods get priority. Thus, if neighborhood n > 1 is

policed, then all neighborhoods with lower or equal vigilance should be policed too. Given

this, to determine whether n should be policed, the social planner needs to compare a fair

split of available resources p̄/n against the average vigilance gap (measured in odds) between

n all lower vigilance neighborhoods i < n, namely, 1
n

∑n
i=1(

φn
1−φn −

φi
1−φi ). Neighborhood n

is policed if and only if the fair split p̄/n exceeds this gap. Thus, neighborhood n∗ in

Proposition 4 is the last one to satisfy this property. Having determined n∗, the social

planner would then allocate a fair share p̄/n∗ to all neighborhoods n ≤ n∗ minus/plus an

amount that equals the excess/lack of vigilance of n compared to the average.

All in all, our analysis uncovers that to optimally allocate resources, it is crucial to

gather information about the vigilance levels of all relevant neighborhoods. The comparison

between individual and average vigilance is key to allocating policing to minimize crime. In

particular, if neighborhood n is overprotected in having vigilance greater than the (condi-

tional) average, then the optimal policing in n is less than the average policing across all

policed neighborhoods p̄/n∗, while the opposite holds if neighborhood n is under-protected.

We illustrate Proposition 4 using numerical simulations of a random crime and policing

model. To this end, we first fix both the total number of neighborhoods N and policing

resources p̄. Next, we generate a random sample of K = 1, 000 observations as follows.

For each observation k = 1, . . . , K, the failure rates φkn are drawn independently from a

uniform distribution. We then compute the optimal policing allocation n∗k and p∗n,k for each k.

Finally, we plot the sample averages 1
K

∑
n∗k and 1

K

∑
p∗n,k, and perform comparative statics.

The top panels of Figure 1 depict the fraction of policed neighborhoods, or coverage, as a

function of N . In particular, the left panel fixes p̄ = 0.75 and depicts how the coverage

depends on the degree of vigilance inequality: as the number of neighborhoods rises, the

optimal coverage falls (due to resources being fixed); furthermore, the effect is amplified if,

in addition, neighborhoods have greater degrees of vigilance inequality. The top right panel

illustrates a similar effect but highlights the role of policing resources.

The bottom panels fix N = 10 and depict the optimal policing in each neighborhood n

(sorted from low to high vigilance). The left one sets p̄ = 0.75 and illustrates how the optimal

policing allocation turns completely fair as vigilance inequality vanishes. The right panel

considers φn ∼ U [0, 1] and depicts how the optimal policing falls as resources available fall.
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Figure 1: Policing coverage and intensity with criminal search. The top panels depict the coverage
as a function of the number of neighborhoods, as well as the inequality in vigilance (left panel) and police
resources (right panel). The bottom panels illustrate how the policing level in each neighborhood depends
on the vigilance inequality across neighborhoods (left panel) and police resources (right panel).

6 Optimal policing without criminal search

So far, we have examined the optimal policing allocation when potential criminals inspect

neighborhoods sequentially before deciding whether to commit a crime or not. The inspec-

tion process can be seen as criminals acquiring information about the neighborhood before

taking an action. It is plausible that in some cases this information acquisition process is

prohibitively costly for some criminals, differentiating experts from non-experts (Nee and

Meenaghan, 2006), or the security measures may be designed to be hidden from criminals

(e.g., silent alarm systems). Critically, if learning whether a neighborhood is policed or

protected is too costly or technologically infeasible, then potential criminals will base their

decisions using their prior knowledge to compute expected payoffs, as in Becker (1968).

We now explore this possibility and show that the optimal policing fundamentally changes

compared to the one found in §5. Finding this allocation also demands a new approach.

So motivated, we now examine the optimal policing allocation when potential criminals

decide whether and where to commit a crime by simply comparing the expected payoff

associated with each neighborhood. We maintain the same timing assumption as in §3, i.e.,

the police agency chooses first the policing level in each neighborhood p = (pn)n∈N , and then
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potential criminals best respond to it. We examine subgame perfect equilibria. Notice that

the extra choice of when to attempt a crime is now gone, reflecting the absence of search.22

We start analyzing the potential criminals’ problem. Given policing p, potential criminals

attempt a crime in the neighborhood that gives the highest expected criminal profits :

π(p) := max
n∈N

rn(1− φn)− pnf.

Let us call αn(p) ∈ [0, 1] the probability that the criminal attempts a crime in neighbor-

hood n, given p, with
∑

n∈N αn(p) ≤ 1 (abstaining from crime is also allowed). Optimal

criminal behavior requires the following condition to hold:

αn(p) > 0 =⇒ rn(1− φn)− pnf = π(p). (7)

That is, a crime is attempted in neighborhood n only if n yields the highest expected profits.

The criminals’ best-response correspondence BRC(p) contains the profiles (αn(p))n∈N for

which (7) holds. Given p, a criminal strategy is deemed optimal if it belongs to BRC(p).

The crime rate in neighborhood n is the chance that an attempted crime “succeeds,”

which happens when n is neither policed nor privately protected, as in §4. Specifically,

given an allocation p and an optimal criminal strategy, the crime rate in neighborhood n is

αn(p)(1− φn)(1− pn).23 The police agency chooses p to solve:

min
(pn)n∈N

∑
n∈N

αn(p)(1− φn)(1− pn)

s.t.
∑
n∈N

pn ≤ p̄

pn ≥ 0 ∀n ∈ N

This optimization problem is subtle because, given a policing allocation p, the criminals’

best-response correspondence BRC(p) need not be single-valued, and thus the total crime

rate depends on the optimal criminal strategy profile being selected. This imposes a challenge

when assessing the performance of different police allocations, which is a fundamental step

for finding optimal policies. To address this issue, we next impose a natural equilibrium

selection, or a mild restriction on how an optimal strategy αn(p) changes as p changes.

22Interestingly, it can be shown that this case can be seen as a search problem like in Section §4, in which
the search cost (c) is sufficiently high while the criminal outside option (u0) is negative and low enough.

23To have a clean comparison between the search and no search cases, we assume that the police agency
seeks to minimize the number of crimes that succeed and are not cleared by an arrest. In Section §4, this
police objective arouse naturally as a consequence of the optimal criminal search behavior (Proposition 1).
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Consider two policing allocations p and p̃, with p 6= p̃, and suppose that the neighbor-

hoods’ sets {n : rn(1 − φn) − pnf = π(p)} and {n : rn(1 − φn) − p̃nf = π(p̃)} coincide.

Then, we select optimal criminal strategies αn(p) and αn(p̃) so that αn(p) = αn(p̃) for all

n. In other words, if two allocations leave the criminals indifferent among the same set of

(most attractive) neighborhoods, then criminals’ optimal strategy is the same under any of

these allocations, i.e., the criminals’ behavior remains unchanged. Henceforth, we keep this

restriction, which allows us to establish a natural necessary condition for the optimality of p.

Lemma 3. Suppose p minimizes total crime. Then, pn > 0 =⇒ rn(1− φn)− pnf = π(p).

Intuitively, Lemma 3 states that policing neighborhoods that are unattractive to criminals

is suboptimal for the police agency, as these resources could help reduce crime had they

been allocated to more attractive neighborhoods for them. Hence, in equilibrium, policed

neighborhoods must be those that offer the highest expected profits to criminals.

Next, without loss of generality, we sort neighborhoods according to their expected crim-

inal rewards, or rents : r1(1− φ1) ≤ · · · ≤ rN(1− φN). Similar to §5, we will show that the

optimal policing allocation has a cutoff structure. Indeed, given this neighborhood sorting

and Lemma 3, policed neighborhoods (pn > 0) must have higher rents rn(1−φn) than unpo-

liced ones (pn = 0).24 This suggests that, in equilibrium, policed neighborhoods n are those

above a critical neighborhood n∗ and provide the highest expected profits to criminals. We

can then recast the police agency problem as choosing a policy consisting of a critical neigh-

borhood n∗, ensuring that feasibility, neighborhood sorting, and the necessary conditions for

police optimality are met. We say policy n∗ ∈ N is implementable if there exists a policing

allocation p = (pn)n∈N such that the following three conditions hold:

(i) pn > 0⇒ rn(1− φn)− pnf = π(p);

(ii) rn(1− φn)− pnf = π(p) if and only if n ≥ n∗;

(iii)
∑

n∈N pn = p̄ with pn ≥ 0.

This reformulation of the police’s problem leads to a clean and tractable description

of equilibria, as the set of implementable policies has a simple characterization. Define

ζ : N → R as:

ζ(n) :=
−p̄f +

∑
k≥n rk(1− φk)

N − n+ 1
. (8)

We say that n̂ is a local max of ζ if there exists δ ≥ 1 such that ζ(n̂) ≥ ζ(n) for all

n ∈ N within (euclidean) distance δ of n̂. Our next result fully characterizes the set of

implementable policies.

24In effect, if pn > pk = 0 and rn(1−φn) ≤ rk(1−φk), then rn(1−φn)−pnf < π(p), and thus allocation p
cannot be optimal, according to Lemma 3.
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Proposition 5. Policy n∗ ∈ N is implementable if and only if n∗ is a local max of ζ.

For some intuition, suppose that policy n∗ is implementable. Then, ζ(n∗) determines the

equilibrium profits to criminals. Indeed, let π∗ := π(p). Then, rn(1− φn)− pnf = π∗ for all

n ≥ n∗. Solving for pn yields pn = (rn(1−φn)−π∗)/f . Using the binding resource constraint∑
n pn = p̄, we get π∗ = ζ(n∗). Now, to understand why n∗ must be a local max of ζ, we

exploit the following lemma, which is related to the criminals’ incentives.

Lemma 4. Let n ∈ N with n < N . The following statements are equivalent:

(i) ζ(n+ 1) ≥ ζ(n);

(ii) ζ(n+ 1) ≥ rn(1− φn);

(iii) ζ(n) ≥ rn(1− φn).

When n∗ is implementable, ζ(n∗) equals the equilibrium criminal profits. This means

that attempting a crime in unpoliced neighborhoods must leave criminals worse off, i.e.,

ζ(n∗) ≥ rn(1 − φn) for all n < n∗. By our neighborhood sorting, this reduces to ζ(n∗) ≥
rn∗−1(1 − φn∗−1), or ζ(n∗) ≥ ζ(n∗ − 1) by Lemma 4. In addition, as previously mentioned,

implementability requires pn = (rn(1 − φn) − π∗)/f for n ≥ n∗. Since pn ≥ 0, the latter

condition is equivalent to ζ(n∗) ≤ rn∗(1− φn∗), or ζ(n∗) ≥ ζ(n∗ + 1) by Lemma 4. In sum,

n∗ is a local max of ζ. (The only if direction is similar and proved in the appendix.)

Our next lemma puts a constraint on the shape that ζ(·) can take, allowing us to sharpen

further the characterization of the set of implementable policies.

Lemma 5. Let n ∈ N with 1 < n < N . Then, ζ(n+1)−ζ(n) ≥ 0 =⇒ ζ(n)−ζ(n−1) ≥ 0.

Proof: Consider n ∈ N with 1 < n < N . If ζ(n + 1) ≥ ζ(n) then ζ(n) ≥ rn(1 − φn), by

Lemma 4. Thus, ζ(n) ≥ rn−1(1− φn−1), since rn(1− φn) ≥ rn−1(1− φn−1), by rent sorting.

Consequently, ζ(n) ≥ ζ(n− 1), again by Lemma 4. �

It follows that ζ(·) is either monotone, or hump-shaped. For instance, suppose that

ζ(N) ≥ ζ(N − 1). Then, by Lemma 5, we have that ζ(N) ≥ ζ(N − 1) ≥ · · · ≥ ζ(1),

i.e., ζ is monotone increasing. Conversely, if ζ eventually decreases, then it continues to

do so. Consequently, policy n∗ is implementable if and only if n∗ ∈ arg maxn∈N ζ(n); see

Lemma A.1 in Appendix A.10. This allows us to show that all implementable policies lead

to the same equilibrium outcome (Lemma A.2). Therefore, the optimal policing allocation

is uniquely determined.
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Proposition 6. Let r1(1− φ1) ≤ · · · ≤ rN(1− φN). Define the critical neighborhood as:

n∗ = min

{
n ∈ N :

p̄

N − n+ 1
+

1

N − n+ 1

N∑
k=n

(
rn(1− φn)− rk(1− φk)

f

)
> 0

}
.

Then, the optimal policing allocation is given by:

p∗n =
p̄

N − n∗ + 1
+

1

N − n∗ + 1

N∑
k=n∗

(
rn(1− φn)− rk(1− φk)

f

)
∀n ≥ n∗,

and p∗n = 0 for all neighborhoods n < n∗.

The logic is the following (the formal proof is in Appendix A.10). Using the observations

preceding the proposition, one can show that if maxn ζ(n) > ζ(N) then policy n∗ obeys n∗ =

min{n ∈ N : ζ(n)− ζ(n+ 1) > 0}, i.e., n∗ is the first instance at which ζ strictly decreases.

Then, using (8), n∗ can be written as in the statement of the proposition. Conversely, if

maxn ζ(n) = ζ(N) then ζ must be monotone increasing (Lemma 5), and so n∗ = N . Clearly,

n∗ rises as resources p̄ rise; hence, one can find thresholds p̄` and p̄h such that policing all

neighborhoods is optimal when p̄ ≥ p̄h (large budget), while policing only N is optimal

when p̄ ≤ p̄` (tight budget).25 As for the optimal policing intensity, rather than equalizing

the “bang-per-buck” across policed neighborhoods, as in Proposition 4, the optimal policing

equalizes the expected criminal profits within policed neighborhoods, namely, rn(1− φn)−
p∗nf = ζ(n∗) for all n ≥ n∗, which highlights the different types of trade-offs that the police

agency faces, depending on the criminals’ operation practices (search versus no search).

Proposition 6 shows interesting qualitative differences compared to the case in which

criminals search for the best target (Proposition 4). First, while vigilance inequality is key

to allocating policing when there is criminal search, here it is the inequality in rents, or rent

inequality, that shapes the optimal allocation of police resources. Indeed, the optimal policing

allocation prioritize high rent neighborhoods; in particular, the highest rent neighborhood

(n = N) is always policed. Also, the allocation of resources among high rent neighborhoods

is from top to bottom, namely, if neighborhood n is policed then all neighborhoods k > n are

policed too. So, to determine whether neighborhood n should be policed, the social planner

compares a fair split of resources among all neighborhoods with higher rents than n, i.e.,

p̄/(N − n+ 1), with the average rent gap between n and the rest of the neighborhoods with

higher rents than n, 1
N−n+1

∑
k≥n

(
rk(1−φk)−rn(1−φn)

f

)
. Neighborhood n is policed if the fair

split exceeds this gap. Hence, n∗ is the last neighborhood (from high to low rents) to satisfy

25These thresholds are p̄h :=
∑N
k=1[rk(1−φk)−r1(1−φ1)]/f and p̄` := [rN (1−φN )−rN−1(1−φN−1)]/f .
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this property. After n∗ is found, the optimal policing allocates a fair p̄/(N − n∗ + 1) to all

policed neighborhoods n ≥ n∗ plus (resp. minus) an amount that reflects the excess (resp.

lack) of rents of n compared to the average within policed neighborhoods. Neighborhoods

with higher rents than the average receive more than a fair share of the police resources.

Second, when criminals search for the best target, there is a substitution between vigilance

and policing because criminals are highly likely to pass on high vigilance neighborhoods after

the inspection stage. In contrast, when search is absent, criminals are drawn to high rent

neighborhoods, even if these ones have high vigilance. This means that assigning more police

resources to high vigilance neighborhoods could be part of an optimal policing strategy,

reflecting possible complementarities between vigilance and policing.

Finally, the simple policy of policing all neighborhoods at a common intensity is now

optimal when all neighborhoods have equal rents, not necessarily equal vigilance.

Corollary 2. The optimal policing allocates an equal share of resources to all neighborhoods,

i.e., p∗n = p̄/N for all n ∈ N if, and only if, all neighborhoods offer the same expected rewards

to criminals, i.e., rn(1− φn) = rk(1− φk) for all n, k ∈ N .

Thus, if neighborhoods have the same vigilance (say φn = φ0 for all n) and rewards (rn = r0

for all n), then splitting police resources evenly across neighborhoods is optimal, regardless

of whether criminals search or not, by Corollaries 1–2. In particular, the optimal allocation

does not leverage information on the vigilance (φ0) or rewards (r0) levels.

Finally, to close this section, we illustrate our results in Figure 2. Concretely, we fix the

parameters (N, p̄, f) and construct a random sample of K = 1, 000 observations. For each

k = 1, . . . , K, the rents rkn(1−φkn) are drawn independently from a uniform distribution. We

then compute the optimal allocation n∗k and p∗n,k for each k, and plot the sample averages

on the vertical axis. In all panels, we consider f = 0.25.

The top panels of Figure 2 depict the fraction of policed neighborhoods (N − n∗ + 1)/N

(coverage) as a function of N . We examine how rent inequality and police resources impact

the policing coverage. In particular, the left panel fixes the degree of rent inequality between

neighborhoods (uniform between 0 and 1) and depicts how the policing coverage depends

on the police resources p̄: as the number of neighborhoods rises, the policed coverage falls;

however, this can be counteracted by increasing resources p̄. The top right panel sets p̄ = 0.75

and illustrates how rent inequality affects coverage: with no rent inequality, there is full

coverage (Corollary 2), yet this one decreases as rent inequality increases.

The bottom panels consider 10 neighborhoods, ordered from low to high rents, and

depict the optimal policing in each of them. The bottom left panel fixes the degree of rent

inequality between neighborhoods (uniform between 0 and 1) and examines the effect of
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Figure 2: Policing coverage and intensity without criminal search. The top panels illustrate the
coverage as a function of the number of neighborhoods, the police resources (left panel), and the inequality in
rents across neighborhoods (right panel). The bottom panels depict the policing levels across neighborhoods
and how it depends on the amount of resources (left panel) and the inequality in rents (right panel).

policing resources. The optimal policing (Proposition 6) rises as p̄ rises. The bottom right

panel fixes the resource level p̄ = 0.75 and illustrates how the optimal policing allocation

becomes fair as rent inequality vanishes across neighborhoods.

7 Concluding Remarks

Understanding how criminals choose a target among many alternatives is crucial to designing

and implementing better crime reduction policies, especially if police agencies face tight

budgetary constraints. In this paper, we examine how to allocate scarce police resources

across potential crime targets to minimize the overall crime rate. Our analysis accounts

for the potential search behavior of criminals, who may expend resources before attempting

a crime to ensure success without being caught. We also investigate the counterpart to

this scenario, in which these expenditures may be too costly for criminals, reflecting limited

expertise, or technological constraints.

Our paper indicates that understanding the factors that determine the criminals’ modus

operandi, as well as specific inequality measures of neighborhoods are central to improving
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the allocation of police resources to decrease crime. If criminals search before attempting a

crime, then the optimal policing allocation depends on the vigilance inequality across neigh-

borhoods. This allocation prioritizes low vigilance neighborhoods, providing them resources

proportionate to the gap between their vigilance and the average vigilance across policed

neighborhoods. Furthermore, the equitable policy of splitting resources evenly across neigh-

borhoods is optimal if and only if all neighborhoods have the same vigilance level.

In contrast, if criminals do not search before attempting a crime, then the optimal police

allocation reflects the rent inequality across neighborhoods, which is a byproduct of both

vigilance and the rewards of each neighborhood. Hence, splitting police resources evenly

across neighborhoods is optimal when all neighborhoods offer the same expected rewards to

criminals; otherwise, neighborhoods associated with high expected rewards are given priority

and are also assigned more police resources. Altogether, our analysis suggests that in addition

to gathering data on relevant neighborhood characteristics, it is equally important to collect

information on the criminals’ operation methods. In fact, policing plays a key role in either

substituting or potentially complementing vigilance depending on this consideration.

We conclude with possible directions for future research. First, our model assumes that

the events of criminal failure (determined by vigilance) and police apprehension are statisti-

cally independent. Without major changes to the model, our results characterizing criminal

behavior and the police’s optimization program extend to the case in which these events are

dependent. However, the optimal policing allocation, i.e., the solution to the police’s pro-

gram need not have a closed-form solution and will depend on the details governing the joint

distribution of these events, making it an interesting problem for further study.26 Second,

to isolate the police allocation trade-off, our framework assumes exogenous vigilance expen-

ditures. Thus, our results are more appropriate to inform policy in the short-run, where

these expenditures are likely to be constant. A natural next step is to introduce a vigilance

adjustment process by which households actively invest in private security in response to

crime.27 Third, in practice, countries vary by their degree of law enforcement centralization.

In the US, for example, neighborhoods are usually policed by different police agencies and

their decisions need not be coordinated; thus, extending the framework to accommodate

potential strategic interactions between police agencies could be a fruitful exercise.28 Fi-

26For the no search case, assuming independent events is without loss of generality.
27With criminal search, households have incentives to underinvest in vigilance, as they would anticipate

greater police protection; in contrast, without criminal search, households may wish to overinvest in vigilance
to decrease their attractiveness to criminals.

28There are many law enforcement agencies in the US (approximately 22,800 in 2017) including (but
not limited to) Municipal Police Departments, Sherif’s Departments, County Police Department, and State
Police Department. Police agencies are led by either a Commissioner (civilian head) or Chief (sworn officer)
or both. See Owens (2020) for further institutional details of the US Law Enforcement.
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nally, from an empirical perspective, it would be interesting to use our theoretical results to

analyze whether the disparities in policing observed in practice (e.g., Chen et al., 2023) can

be justified on efficiency grounds (crime minimization), as well as to evaluate and quantify

possible misallocation channels.
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A Omitted Proofs

A.1 Proof of Lemma 1

We solve for zn in the case where the criminal takes zn and continues search unless they

succeed without getting captured, namely zn ∈ (0, rn). Then, equation (1) is reduced to

zn = −c+ rn(1− φn)(1− pn) + zn[1− (1− φn)(1− pn)].

Solving for zn yields (2). Next, since c > 0, it follows that zn < rn. Moreover, Assumption 1

implies −c+ rn(1− φn)(1− pn) > 0, and thus zn > 0. Altogether, zn ∈ (0, rn). �

A.2 Proof of Proposition 1

By Weitzman (1979) (Pandora’s rule), the criminal searches in descending order of zn and

terminates the search whenever the maximum sampled payoff exceeds the reservation index

zn of every neighborhood not searched yet. Without loss of generality, let us relabel neigh-

borhoods so that z1 ≥ z2 ≥ z3 ≥ · · · ≥ zn. By Lemma 1, zn > 0 for all n, implying that the

criminal finds it optimal to search, as his outside option u0 = 0.

First, we show that if neighborhood n is inspected, then the maximum sampled payoff, i.e.

max{u0, u1, . . . , un−1}must be equal to zero, where ui ∈ {−f, ri−f, 0, ri} denotes the realized

payoff in neighborhood i. We argue by contradiction: Suppose the maximum sampled payoff

prior to inspecting n is strictly positive.29 Then ui = ri for some neighborhood i inspected

prior to n. This implies that, at that moment, 0 = u0 < ui and zi < ui = ri. But

then Pandora’s rule implies that search must have terminated at that moment, since the

maximum sampled payoff is at least ri which is strictly greater than zn for all n ≥ i. Thus,

neighborhood n could have not been inspected. We conclude that max{u0, u1, . . . , un−1} = 0.

Next, we show that if neighborhood n is inspected, then the search terminates if and only

if n is both unprotected and not policed. If n is inspected then max{u0, u1, . . . , un−1} = 0.

Now, if n is unprotected and not policed, then un = rn > zi for all i ≥ n and un >

max{u0, u1, . . . , un−1}. Thus, by Pandora’s rule, the search terminates. Conversely, if n is

either protected or policed, then un ≤ 0 and so max{u0, u1, . . . , un} = 0 which is less than

zi > 0 for i > n. Thus, the search must continue, again by Pandora’s rule.

Finally, if max{u0, u1, . . . , uN} = 0, i.e., all neighborhoods were either policed or pro-

tected, then recalling a previously inspected neighborhood is no greater than taking the

outside option; hence, the criminal is deterred from crime. �

29If the maximum sampled payoff is strictly negative, then n will clearly be inspected, as zn > 0.
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A.3 Proof of Proposition 2

(⇒) We prove that if wi > 0 and wi > wj, then a crime is committed in neighborhood i.

We leverage Proposition 1 throughout the proof. Therefore, if wi ≡ min{ui, zi} > 0 then

zi > 0; thus, the criminal searches at least one neighborhood. Likewise, ui > 0 implies that

the criminal finds it optimal to commit a crime in i, conditional on inspecting i. Hence, it

suffices to show that if, in addition, wi > wj, the crime will be committed in neighborhood i.

Next, we separate into two cases.

(a) Suppose zj < uj. Then wj = min{uj, zj} = zj, and since wi > wj and wi = min{ui, zi},
it follows that zi > zj and ui > zj. This says that the criminal inspects neighborhood

i before j and would have no incentives to visit neighborhood j after inspecting i.

(b) Suppose zj > uj so that wj = uj. Similarly, since wi > wj, then zi > uj and ui > uj.

This says that even if neighborhood j is inspected before i, the criminal has incentives to

keep searching (zi > uj) or to return to a previously inspected neighborhood (ui > uj).

In any case, committing a crime in neighborhood j is suboptimal.

(⇐) Now we prove the converse. Next, we’ll show that if a crime is committed in neigh-

borhood i, then wi > wj and wi > 0. We prove the contrapositive: if wi ≤ wj or wi ≤ 0,

then it is suboptimal to commit a crime in i. First, since zi ∈ (0, ri) (Lemma 1), if wi ≤ 0

then ui ≤ 0. Thus, the criminal will not commit a crime in i, because the realized value

ui is dominated by the outside option (u0 = 0). Second, if wi ≤ wj then it is suboptimal

to commit a crime in i, following the same logic of cases (a) and (b) above. Altogether, if

wi ≤ wj or wi ≤ 0, then the criminal will never commit a crime in neighborhood i. �

A.4 Proof of Lemma 2

Then P(Wn = wn) has the following PDF:

P(Wn = wn) =



(1− pn)(1− φn) wn = zn;

pn(1− φn) wn = rn − f ;

(1− pn)φn wn = 0;

pnφn wn = −f.

The crime rate in neighborhood n is given by κn = P(Wn > Wj,Wn > 0,∀j 6= n). Note

that P(Wn > Wj,Wn > 0, ∀j 6= n)) = P(Wn > Wj,∀j 6= n|Wn > 0)P(Wn > 0) and
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P(Wn > 0) = P(Wn = zn) = (1− pn)(1− φn). Also, by independence,

P(Wn > Wj,∀j 6= n|Wn > 0) =
∏
j 6=n

P(Wn > Wj|Wn > 0).

The problem reduces to finding P(Wn > Wj|Wn > 0). First, we find each individual proba-

bility for the 4 possible values that Wj could take. Since zj > 0 > rj − f for all j:

P(Wn > −f |Wn > 0) = P(Wn > rj − f |Wn > 0) = P(Wn > 0|Wn > 0) = 1.

If Wj = zj, the probability depends on the order between zj and zn. In particular, for zn > zj,

P(Wn > zj|Wn = zn) = 1. On the other hand, for zn ≤ zj, P(Wn > zj|Wn = zn) = 0. Define

N ∗n := {j ∈ N : zj ≥ zn} as the set of neighborhoods ranked above zn. Observe that

P(Wn > Wj,∀j 6= n|Wn > 0) = P(Wn > Wj,∀j /∈ N ∗n |Wn > 0)P(Wn > Wj,∀j ∈ N ∗n |Wn > 0)

=
∏
j /∈N ∗n

P(Wn > Wj|Wn > 0)
∏
j∈N ∗n

P(Wn > Wj|Wn > 0).

We now separate into cases. First consider the case in which j /∈ N ∗n . For zj < zn:

P(Wn > Wj|Wn > 0) = 1pjφj + 1pj(1− φj) + 1(1− pj)φj + 1(1− pj)(1− φj) = 1.

Next, we examine P(Wn > Wj|Wn > 0) for j ∈ N ∗n . Here, we have

P(Wn > Wj|Wn > 0) = 1pjφj + 1pj(1− φj) + 1(1− pj)φj + 0(1− pj)(1− φj)

= 1− (1− pj)(1− φj).

Thus, the crime rate in i is given by:

P(Wn > Wj,∀j 6= n|Wn > 0) = P(Wn > Wj,∀j /∈ N ∗n |Wn > 0)P(Wn > Wj,∀j ∈ N ∗n |Wn > 0)

=
∏
j /∈N ∗n

1
∏
j∈N ∗n

(1− (1− pj)(1− φj)) =
∏
j∈N ∗n

(1− (1− pj)(1− φj)).

Altogether, it follows that

P(Wn > Wj,Wn > 0,∀j 6= n) = P(Wn > Wj,∀j 6= n|Wn > 0)P(Wn > 0)

= (1− pn)(1− φn)
∏
j∈N ∗n

(1− (1− pj)(1− φj))
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This completes the proof. �

A.5 Proof of Proposition 3

Fix a probability space (Ω,F ,P). For each neighborhood n = 1, . . . , N , we define the random

variable Xn : Ω→ {0, 1} with Xn(ω) = 1 if neighborhood n is unprotected and not policed,

and Xn(ω) = 0 otherwise. By assumption, the collection of random variables (Xn)Nn=1 are

independent from one another. Next, for each n, we define the event An = {ω ∈ Ω : Xn(ω) =

1}, and we observe that P(An) = (1− φn)(1− pn).

We will show that for any search order, the crime rate is unchanged. To this end,

consider the simple search order, in which the criminal first inspects neighborhood 1, then

neighborhood 2, etc. Given this simple search, we define K(X1, . . . , XN) ∈ {0, 1} as the

realized crime rate. By Lemma 2, this function is given by:

K(X1, . . . , XN) := X1 +X2(1−X1) + · · ·+XN

N−1∏
i=1

(1−Xi).

Thus, the total crime rate is determined by E[K(X1, . . . , XN)], i.e.:

N∑
n=1

κn = E[K(X1, . . . , XN)].

The next lemma shows that, for the simple search order, the total crime rate is equal to the

probability of having a successful crime among N trials. Specifically,

Lemma 6. For the simple search order, E[K(X1, . . . , XN)] = P(
⋃N
n=1An) for all N ≥ 2.

Proof: We prove the claim by induction. Consider the base case N = 2. Then, K(X1, X2) =

X1 +X2(1−X1), and so:

E[K(X1, X2)] = E(X1) + E(X2)(1− E(X1))

= E(X1) + E(X2)− E(X1)E(X2)

= P(A1) + P(A2)− P(A1)P(A2)

= P(A1) + P(A2)− P(A1 ∩ A2)

= P(A1 ∪ A2).

Next, suppose the formula holds for N > 2. We’ll show that this implies that the formula

must hold for N + 1. To this end, let ÂN :=
⋃N
n=1An and notice that ÂN is independent of
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AN+1. Thus,

P(Ân ∪ AN+1) = P(ÂN) + P(AN+1)− P(ÂN ∩ AN+1)

= P(ÂN) + P(AN+1)− P(ÂN)P(AN+1)

= E[K(X1, . . . , XN)] + E(XN+1)(1− E[K(X1, . . . , XN)]),

where we used independence to get the second equality, and the inductive hypothesis to get

the third one. Now, notice that,

1− E[K(X1, . . . , XN)] = 1− P

(
N⋃
n=1

An

)
= P

(
(
N⋃
n=1

An)c

)
= P

(
N⋂
n=1

Acn

)
=

N∏
n=1

P(Acn).

Since P(Acn) = 1− P(An) = 1− (1− φn)(1− pn), it follows that:

P(Ân ∪ AN+1) = E[K(X1, . . . , XN)] + E(XN+1)(1− E[K(X1, . . . , XN)])

= E[K(X1, . . . , XN)] + P(AN+1)
N∏
n=1

P(Acn)

= E[K(X1, . . . , XN)] + (1− φN+1)(1− pN+1)
N∏
n=1

(1− (1− φn)(1− pn))

= E[K(X1, . . . , XN)] + κN+1 =
N+1∑
n=1

κn

= E[K(X1, . . . , XN+1)].

In other words, E[K(X1, . . . , XN+1)] = P(
⋃N+1
n=1 An), and the claim is proved. �

By Lemma 6, the total crime rate for the simple search order obeys

N∑
n=1

κn = P

(
N⋃
n=1

An

)
,

but notice that the right hand side of this expression must be independent of the search

order because the union of sets is obviously commutative. More precisely, consider any

permutation σ : {1, . . . , N} → {1, . . . , N}. Then,

E[K(Xσ(1), . . . , Xσ(N))] = P

(
N⋃
n=1

Aσ(n)

)
= P

(
N⋃
n=1

An

)
= E[K(X1, . . . , XN)].

Since a search order can be seen as a permutation over a set of alternatives, we conclude
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that the total crime rate is independent of σ(·). �

A.6 Proof of Proposition 4

Notice that the objective function is strictly concave, while the constraint set is convex.

Thus, the Karush-Kuhn-Tucker (KKT) conditions will effectively identify the optimal polic-

ing allocation p∗. The Lagrangian of this problem is given by:

L(p) =
∑
n∈N

log(pn(1− φn) + φn)− λ

(∑
n∈N

pn − p̄

)
+
∑
n∈N

µnpn,

where λ ≥ 0 and µn ≥ 0 denote the Lagrange multipliers. The first-order conditions are:

1− φn
pn(1− φn) + φn

− λ+ µn = 0 ∀n ∈ N . (9)

We’ll show that there exists non-negative multipliers (λ, (µn)n∈N ) such that the profile

((p∗n)n∈N , (µn)n∈N , λ) satisfies the KKT conditions. To this end, consider n∗ as in the state-

ment of the proposition. First, since p∗n > 0 for all n ≤ n∗, we set µn = 0 for n ≤ n∗ to

satisfy complementary slackness. Second, consider λ > 0 as follows:

λ−1 =
p̄

n∗
+

1

n∗

n∗∑
i=1

φi
1− φi

. (10)

Then, it is easy to see that, given λ in (10), p∗n solves the FOC (9) for all n ≤ n∗.

Next, we use (9) to find µn for n > n∗ and verify that their values are non-negative.

Using (10) for λ and p∗n = 0 we get:

µn =

(
p̄

n∗
+

1

n∗

n∗∑
i=1

φi
1− φi

)−1
− 1− φn

φn
∀n > n∗

Hence, µn ≥ 0 if and only if,

p̄

n∗
+

1

n∗

n∗∑
i=1

φi
1− φi

− φn
1− φn

≤ 0 ∀n > n∗,

which is, indeed, the case, given the definition of n∗.

Finally, we verify that the resource constraint holds. Since λ > 0, the resource constraint
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binds at the optimum, which is also satisfied because:

∑
n∈N

p∗n =
n∗∑
n=1

p∗n = p̄+
n∗∑
n=1

φn
1− φn

−
n∗∑
n=1

φn
1− φn

= p̄.

Altogether, the profile ((p∗n)n∈N , (µn)n∈N , λ) satisfies the KKT conditions, and thus (p∗n)n∈N

is an optimal policing allocation. �

A.7 Proof of Lemma 3

We prove the contrapositive. Suppose that neighborhood n is policed (pn > 0) and rn(1 −
φn)−pnf < π(p). Condition (7) implies that αn(p) = 0. We’ll show that there exists another

policing allocation p̃ that leads to strictly less crime than p does; thus, p cannot minimize

crime. To this end, consider the set K of all neighborhoods k satisfying rk(1− φk)− pkf =

π(p). Let p̃n = pn − ε for small ε > 0, and

p̃k = pk +
ε

|K|
∀k ∈ K.

For the remaining neighborhoods, let p̃k = pn for k′ /∈ K ∪ {n}. Clearly, p̃ satisfies the

resource constraint since p does.

Next, under policing p̃, the expected criminal profits are rk(1−φk)− p̃kf = π(p)− ε/|K|
for all k ∈ K. Moreover, since for all k′ /∈ K ∪ {n} we have π(p) > rk′(1 − φk′) − pk′f , it

follows that we can choose ε > 0 such that ε ≤ pn and also:

ε

|K|
< π(p)−

(
max

k/∈K∪{n}
rk(1− φk)− pkf

)
;

ε

|K|
+ εf < π(p)− (rn(1− φn)− pnf).

This ensures that, for any ε satisfying the conditions above, we have that

π(p̃) = π(p)− ε

|K|
> rk(1− φk)− p̃kf ∀k /∈ K,

implying that αn(p) = αn(p̃) for all n. Moreover, since p̃k > pk for all k ∈ K:∑
n∈N

αn(p̃)(1− φn)(1− p̃n) <
∑
n∈N

αn(p)(1− φn)(1− pn).

Consequently p cannot be optimal. Altogether, we conclude that, at the optimum, pn > 0
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implies rn(1− φn)− pnf = π(p). �

A.8 Proof of Lemma 4

(i)⇐⇒ (ii). By definition,

ζ(n+ 1)− ζ(n) =
−p̄f +

∑
k≥n+1 rk(1− φk)
N − n

+
p̄f −

∑
k≥n rk(1− φk)

N − n+ 1

=
−p̄f +

∑
k≥n+1 rk(1− φk)
N − n

+
p̄f − rn(1− φn)−

∑
k≥n+1 rk(1− φk)

N − n+ 1

=

(
−p̄f +

∑
k≥n+1

rk(1− φk)

)(
1

N − n
− 1

N − n+ 1

)
− rn(1− φn)

N − n+ 1

=

(−p̄f +
∑

k≥n+1 rk(1− φk)
N − n

− rn(1− φn)

)
1

N − n+ 1

= (ζ(n+ 1)− rn(1− φn))
1

N − n+ 1

Consequently, ζ(n+ 1) ≥ ζ(n) if and only if ζ(n+ 1) ≥ rn(1− φn).

(i) ⇐⇒ (iii). We proceed analogously but expressing the difference ζ(n + 1) − ζ(n) in

terms of ζ(n):

ζ(n+ 1)− ζ(n) =
−p̄f +

∑
k≥n+1 rk(1− φk)
N − n

+
p̄f −

∑
k≥n rk(1− φk)

N − n+ 1

=
−p̄f +

∑
k≥n rk(1− φk)− rn(1− φn)

N − n
+
p̄f −

∑
k≥n rk(1− φk)

N − n+ 1

=

(
−p̄f +

∑
k≥n

rk(1− φk)

)(
1

N − n
− 1

N − n+ 1

)
− rn(1− φn)

N − n

=

(−p̄f +
∑

k≥n rk(1− φk)
N − n+ 1

− rn(1− φn)

)
1

N − n

= (ζ(n)− rn(1− φn))
1

N − n

Thus, ζ(n+ 1) ≥ ζ(n) if and only if ζ(n) ≥ rn(1− φn). �

A.9 Proof of Proposition 5

The “if” part is proved on the main text. We now prove the “only if” direction. Suppose

that n∗ is a local max of ζ. Without loss, let n∗ /∈ {1, N} (the cases n∗ = 1 or n∗ = N are
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analogous).30 Then, it follows that ζ(n∗) ≥ ζ(n∗ − 1) and ζ(n∗) ≥ ζ(n∗ + 1). By Lemma 4,

these inequalities can be expressed as ζ(n∗) ≥ rn∗−1(1 − φn∗−1) and ζ(n∗) ≤ rn∗(1 − φn∗).
Let p∗n = (rn(1 − φn) − ζ(n∗))/f for n ≥ n∗ and p∗n = 0 for n < n∗. Then, p∗n ≥ 0 for all n,

and given the definition of ζ:∑
n

p∗nf =
∑
n≥n∗

rn(1− φn)− (N − n∗ + 1)ζ(n∗) = p̄f,

and so the resource constraint is satisfied. Next, we show that neighborhoods n∗ ≥ n deliver

the highest expected profits to criminals. Indeed, rn(1−p∗n)−p∗nf = ζ(n∗) for all n ≥ n∗; also,

ζ(n∗) ≥ rn∗−1(1 − φn∗−1) = maxn<n∗ rn(1 − φn). Finally, we notice that all neighborhoods

with expected profits strictly less than ζ(n∗) have zero policing p∗n = 0. Altogether, n∗ is

implementable. �

A.10 Proof of Proposition 6

To prove this result, we leverage two lemmas.

Lemma A.1. Consider ζ(·) in (8). If n∗ ∈ N locally maximizes ζ, then ζ(n∗) = maxn∈N ζ(n).

Proof: We’ll show that any local max of ζ must be a global max. This is trivially true if

arg maxn ζ(n) is single-valued. So suppose that n∗1 and n∗2 locally maximize ζ, with n∗2 > n∗1.

We will show that ζ(n∗1) = ζ(n∗2). On the one hand, since n∗1 locally maximizes ζ, it follows

that ζ(n∗1) ≥ ζ(n∗1 + 1); thus, Lemma 5 implies that ζ must weakly decrease for n ≥ n∗1:

ζ(n∗1) ≥ ζ(n∗1 + 1) ≥ · · · ≥ ζ(N). As a result, ζ(n∗1) ≥ ζ(n∗2). On the other hand, n∗2 also

locally maximizes ζ, and so ζ(n∗2) ≥ ζ(n∗2−1); therefore, Lemma 5 implies that ζ must weakly

increase for n ≤ n∗2: ζ(1) ≤ ζ(2) ≤ · · · ≤ ζ(n∗2). Consequently, ζ(n∗1) ≤ ζ(n∗2). Altogether,

ζ(n∗1) = ζ(n∗2). Finally, since a global max is, in particular, a local max, it follows that any

local maximizer n∗ is a global maximizer, i.e., ζ(n∗) = maxn∈N ζ(n). �

Lemma A.2. Let p∗
n∗ denote the optimal policing allocating when n∗ ∈ N is implemented.

Then, if policies n∗1 and n∗2 are both implementable, then p∗
n∗

1
= p∗

n∗
2
.

Proof: We’ll show that any implementable policy leads to the same optimal policing alloca-

tion. The statement is trivially true if arg maxn ζ(n) is single-valued. So suppose that n∗1 and

n∗2 are both implementable, with n∗1 < n∗2. By Proposition 5, this means that both n∗1 and

n∗2 locally maximize ζ, and thus ζ(n∗1) = ζ(n∗2) = maxn ζ(n), by Lemma A.1. Moreover, by

30To implement neighborhood n = 1, we only need to satisfy ζ(1) ≤ r1(1 − φ1), while to implement
neighborhood n = N , we only require ζ(N) ≥ rN−1(1− φN−1).
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the same logic given in the proof of Lemma A.1, it easily follows that ζ(k) = maxn ζ(n) for

all k ∈ {n∗1, . . . , n∗2}. That is, all neighborhoods between n∗1 and n∗2 are also implementable.

Next, we’ll show that maxn ζ(n) = rk(1 − φk) for all k ∈ {n∗1, . . . , n∗2 − 1}. To see this,

let k ∈ {n∗1, . . . , n∗2 − 1}. Then, ζ(k + 1) = ζ(k), and so ζ(k + 1) = ζ(k) = rk(1 − φk), by

Lemma 4. Hence, maxn ζ(n) = rk(1− φk) since k is implementable.

Having established these facts, suppose policy n∗1 is implemented. In the main text, we

show that ζ(n∗1) equals the equilibrium profits for criminals. Thus, the optimal policing p∗n∗
1

entails allocating resources so that rk(1−φk)−p∗k,n∗1f = ζ(n∗1) for all k ≥ n∗1 and p∗k,n∗1 = 0 for

k < n∗1. However, because ζ(n∗) = ζ(k) = rk(1 − φk) for all k ∈ {n∗1, . . . , n∗2 − 1}, it follows

that p∗k,n∗1 = 0 for all k ∈ {n∗1, . . . , n∗2 − 1}. As a result, p∗n∗
1

= p∗n∗
2

since ζ(n∗2) = ζ(n∗1). �

Proof of Proposition 6: As previously argued, Lemma 5 indicates that ζ in (8) is either

monotone or hump-shaped. As a result, any local max is a global max (Lemma A.1). In

addition, Lemma A.2 indicates that all implementable policies (or global maximizers of ζ)

lead to the same optimal policing allocation; in particular, for any implementable policy

k∗, we have p∗
k∗ = p∗

n∗ , where n∗ = max{n ∈ N : n is implementable}. This implies that,

without loss of generality, the optimal policing allocation can be written as: p∗n = 0 for all

n < n∗ and p∗n = (rn(1−φn)− ζ(n∗))/f for all n ≥ n∗. Using (8), the latter transforms into:

p∗n =
p̄

N − n∗ + 1
+

1

N − n∗ + 1

N∑
k=n∗

(
rn(1− φn)− rk(1− φk)

f

)
.

Finally, notice that if n∗ < N then n∗ can be expressed as n∗ = min{n ∈ N \ {N} :

ζ(n) − ζ(n + 1) > 0}. Also, the proof of Lemma 4 indicates that ζ(n) − ζ(n + 1) =

[rn(1− φn)− ζ(n)]/(N − n) for n < N . Thus, using (8) again, n∗ can be written as

n∗ = min

{
n ∈ N \ {N} :

p̄

N − n+ 1
+

1

N − n+ 1

N∑
k=n

(
rn(1− φn)− rk(1− φk)

f

)
> 0

}
.

Conversely, if the set above is empty, then n∗ cannot be strictly less than N ; therefore,

n∗ = N . Altogether, we can write n∗ as in the statement of the proposition. �
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