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Abstract

There has been a growing discussion on digital currencies in the last few years, particularly

Bitcoin. Nevertheless, research studies on Bitcoin adoption and experimentation are limited.

In this paper, we develop a tractable model of Bitcoin experimentation in which agents are

uncertain about the quality of the underlying technology and update their beliefs by observing

the survival of Bitcoin. The model determines how adoption decisions depend on: (1) network

effects; (2) own learning effects; and (3) social learning effects. We test the theoretical model’s

findings using unique data from the Bank of Canada’s Bitcoin Omnibus Survey.

After accounting for the endogeneity of beliefs, we find that both network effects and own

learning effects significantly impact Bitcoin adoption; however, we find no evidence on social

learning effects. In particular, a one percentage point increase in the network size increases the

probability of adoption by 0.96 percentage points, whereas a one percentage point increase in

Bitcoin survival beliefs increases the probability of adoption by 0.17 percentage points. Our

results suggest that network effects and individual experimentation were key drivers of Bitcoin

adoption in 2017.
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1 Introduction

It is becoming increasingly important to understand what determines the adoption and usage of

private digital currencies. If private digital currencies become more widely adopted, they may

impact the banking sector and interfere with the central banks’ core functions (e.g., monetary

policy).1 In the last few years, there has been an explosion of so-called “crypto-currencies,” with

more than 740 available. Bitcoin is the leader among them, enjoying the highest market cap and

volume, as well as significant mainstream media attention.2

Bitcoin is a decentralized electronic fiat money with a floating value that allows agents to make

peer-to-peer payments and transactions without needing a trusted third party (Nakamoto, 2008;

Böhme et al., 2015). This technological innovation has sparked interest from different academic

fields, ranging from computer science to economics and finance; see Halaburda and Haeringer

(2018) for a recent survey. Recent evidence indicates that Bitcoin is in an early stage of diffusion:

surveys conducted worldwide put estimates of Bitcoin ownership in the range of 1.5% to 5% (Stix,

2019; Henry et al., 2018; Authority, 2019; Hundtofte et al., 2019). Still, there is no consensus

on whether this new technology will survive or not in the future.3 It appears that individuals are

still experimenting with Bitcoin and learning Bitcoin’s potential benefits and costs. While the

benefits of using Bitcoin are likely to depend on traditional network effects (i.e., how many others

use Bitcoin), the cost of using Bitcoin is likely determined by the quality of this technology —

which is unknown but can be gradually learned from both individual experimentation and market

experimentation. A natural question then follows: How much Bitcoin adoption is explained by

these three forces? The main contribution of this paper is to address this question.

The small but growing literature on digital currencies is largely silent about this question. Some

papers focus on the effects of delaying early adopters on the diffusion of Bitcoin Catalini and Tucker

(2017), whereas others focus on the determinants of the Bitcoin exchange rate, usage, and spec-

ulation motives (Bolt and van Oordt, 2016; Athey et al., 2016). However, because of the lack of

micro-data on agents’ beliefs about Bitcoin survival, empirical studies that focus on Bitcoin adop-

1Indeed, Central banks worldwide are taking Bitcoin and other private digital currencies seriously, as ev-

idenced in part by research and policy initiatives geared towards Central Bank Digital Currency — a dig-

ital form of cash aimed at competing with private counterparts. The Deputy Governor of the Bank of

Canada states “Let’s go back to the two scenarios I presented earlier that could warrant the launch of a

CBDC. The first is where the use of physical cash is reduced or eliminated altogether. The second is

where private cryptocurrencies make serious inroads [. . . ]” Tim Lane’s speech on 25 February 2020, source:

https://www.bankofcanada.ca/2020/02/money-payments-digital-age/.
2In 2017, Bitcoin’s value increased rapidly, hitting historical records. Astonishingly, the price of one Bitcoin

on January 01, 2017 was around US $1000, and it spiked at around US $19000 on December 16, 2017 (Source:

www.coindesk.com). Likewise, the number of Google searches on Bitcoin has also been steadily increasing.
3Budish (2018), e.g., argues that if Bitcoin were to achieve a broad level of acceptance/success as a digital currency,

this would only result in certain economic incentives becoming strong enough that would effectively cause the system

to collapse.
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Figure 1: Expected Bitcoin Survival and Adoption. The graph shows the expected likelihood of survival of Bitcoin

in 15 years, as reported by respondents to the 2017 Bitcoin Omnibus Survey. The red line represents the cumulative

distribution function conditional on no adoption of Bitcoin, whereas the blue line is the same conditional on positive

adoption. The two distributions are statistically different. The figure shows that the agents’ beliefs about Bitcoin

survival is affected by adoption.

tion and experimentation remain somewhat limited.

In this paper, we provide a theoretical and empirical analysis of Bitcoin adoption that takes into

account the three forces mentioned above: (1) network effects; (2) individual learning effects;

and (3) social learning effects.4 Our analysis leverages a unique data from the Bitcoin Omnibus

Survey (BTCOS). The BTCOS was commissioned in late 2016 by the Bank of Canada to gather

information on the awareness and use of Bitcoin among Canadians; it has been conducted annually

since then (Henry et al., 2017, 2018, 2019a, 2020). Data from the 2017 BTCOS uncovers a novel

relationship between Bitcoin adoption and agents’ beliefs about its survival. As seen in Figure 1,

agents’ beliefs about Bitcoin survival differs significantly when adoption is either positive or zero.

In particular, Bitcoin adopters are on average more optimistic about Bitcoin survival than non-

adopters.5 This evidence suggests that Bitcoin experimentation may fuel agents’ beliefs about

Bitcoin which, in turn, may impact future adoption.

So motivated, we develop a simple dynamic model of Bitcoin adoption, in which agents’ beliefs

and adoption patterns are jointly determined. There is a continuum of risk-neutral agents that at

4See, e.g., Goolsbee and Klenow (2002); Moretti (2011); Fafchamps et al. (2020) for other studies of adoption with

network and/or information externalities in different economic contexts.
5Other survey evidence shows that beliefs about the future potential of Bitcoin may play an important role for early

adopters. For example, an Austrian survey revealed that owners believe cryptocurrencies provide relative benefits in

terms of making payments, compared with conventional payment methods (Stix, 2019). However, only 50% of these

owners report having used digital currencies to make a payment. The implies that these owners believe that Bitcoin

and other digital currencies will have benefits in the future.
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every period chooses whether to adopt Bitcoin. Agents have heterogeneous adoption costs, and are

symmetrically uncertain about the Bitcoin technology quality, which can be either good or bad.

Agents benefit from a big network regardless of the technology’s quality. However, the cost of

using Bitcoin naturally depends on technological grounds. In our learning process, it is common

knowledge that a good technology always survives, but a bad one can break down with a positive

chance and, in such event, agents would incur in a loss.6 Thus, the survival of Bitcoin provides

a noisy signal of its quality. Next, to simply capture social learning effects, we assume that a

bad technology is more likely to fail when more people adopt it. Starting from a common prior

belief that the technology is good, agents update their beliefs by observing the survival of Bitcoin.

Survival fuels adoption, which in turn speeds up individuals’ learning.7

The model predicts a positive relationship between the adoption rate and beliefs. In particular, it

determines how individual adoption behavior depends on network effects, individual experimen-

tation, social learning, and adoption costs. We then take these predictions to the data. The main

empirical challenge is the potential simultaneity between the Bitcoin adoption and beliefs: indi-

viduals with high beliefs are more likely to adopt and, conversely, individuals who adopt are more

likely to have high beliefs. To address this potential simultaneity, we consider an identification

strategy based on a two-stage control function approach (Wooldridge, 2015). In the first stage, we

estimate Bitcoin beliefs as a function of observed demographic characteristics and, crucially, an

exclusion restriction captured by the regional growth in Bitcoin ATMs. The exclusion restriction

comes from the supply side, which arguably is correlated with past Bitcoin adoption but not with

current adoption. We further consider another identification mechanism that builds on the potential

difference in functional forms of the two-stage outcomes (Escanciano et al., 2016). In our paper,

this difference is driven by a nonlinear age effect. Altogether, in the second stage, we use the

residual from the first stage as a control function to correct for the endogeneity problem.

The empirical results suggest that both network effects and own learning effects are important

driving forces of Bitcoin adoption. However, we find no evidence that social learning has a signif-

icant effect on individual adoption. Our results show that a one percentage point increase in the

network size raises the probability of Bitcoin adoption by 0.79 percentage points, whereas a one

percentage point increase in Bitcoin survival beliefs raises the chance of Bitcoin adoption by 0.17

percentage points. These results suggest that both network effects and individual experimentation

were driving the adoption of Bitcoin in 2017.

Finally, we find that age — a proxy for adoption costs — has a significant negative impact

on adoption and beliefs, with young people being associated with both more adoption and more

6In other words, we consider an experimentation model with a two-armed bandit whose risky arm yields failures

according to a Poisson process (Keller and Rady, 2015). Its arrival rate is unknown to the agents.
7The speed of learning is endogenous, as in the experimentation literature in small markets (Bolton and Harris,

1999; Keller et al., 2005), as well as large ones (Bergemann and Välimäki, 1997; Frick and Ishii, 2016).
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optimistic beliefs about the survival of Bitcoin.8 Specifically, our results indicate that a one year

increase in age lowers the probability of adoption by 0.03 percentage points. These results are

consistent with our theoretical model, as old individuals are more likely to face high adoption costs.

We set up the model in §2, and discuss the data in §3 and methodology in §4. We test the model

implications in §5. Finally, we conclude in §6. Omitted proofs are available in the Appendix.

2 A Model Bitcoin Adoption and Learning

This section aims to develop a tractable stylized model that allows us to motivate the empirical

analysis. Time is discrete and infinite t = 1, 2, . . . ,∞. There is a unit-mass continuum of risk-

neutral potential adopters. Since identical agents may choose to experiment or not with Bitcoin,

depending on some unobserved characteristic, we assume that agents have heterogeneous adoption

costs c ∈ [0, 1], which are uniformly distributed.9

Since Bitcoin is not backed by a central authority, adopting or using Bitcoin is, fundamentally,

risky. For simplicity, we assume that this technology’s quality is unknown and can be summarized

into a binary variable that can be either good or bad. Intuitively, the quality of this payment tech-

nology may depend on a number of variables, such as reliability, convenience, security, congestion

management, etc. These attributes are hard to assess without individual experimentation.

Next, we introduce a learning process.10 In every period, there is a chance that the technology

fails, depending on its inherent quality. For simplicity, we assume that a good technology always

succeeds, but a bad one is more likely to fail when more people adopt it. Specifically, if the

adoption rate in period t is At and the technology is bad, then the failure chance in period t is

Φ(At) ≡ ϕ + φAt, where ϕ, φ > 0 and ϕ + φ < 1.11 This specification is aimed to simply

reflect individual learning effects (captured by ϕ) and information externalities (captured by φAt).

That is, an individual can learn the quality of the technology not only via her experimentation, but

also via the experimentation of others (see, e.g., Bergemann and Välimäki, 1997). Consequently,

detecting the unknown Bitcoin quality is more likely if more people adopt it, as the chance of

failure increases conditional on the technology being bad. In the context of the mode, the notion

of “failure” is not to depict a situation in which the technology disappears, but rather to illustrate

8Early adopters are typically young leaving in urban areas, are educated and socially active (Rogers, 2010).
9The model has some elements in common with Vásquez and Nield (2019).

10Specifically, we consider an experimentation model with a two-armed bandit whose risky arm yields failures

according to a Poisson process with an unknown arrival; see, e.g., Keller and Rady (2015). However, unlike that

literature, in this paper, experimentation takes place in a large market (Bergemann and Välimäki, 1997).
11Frick and Ishii (2016) examine an innovation adoption model in which agents learn from exogenous and endoge-

neous sources. They consider a model with a continuum of homogeneous agents, in which each agent faces a stopping

problem: when to adopt. They focus on understanding how the nature of learning — namely, whether it is via “good”

or “bad” news — affects adoption patterns.
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Figure 2: The Dynamics of Adoption, Beliefs, and Survival. Starting from a common prior belief in period t that

the technology is good, current adoption and beliefs affect the survival of Bitcoin, which in turn affect the individual

decision to adopt Bitcoin. The survival rate and current beliefs then influence beliefs in the next period, and so on.

that Bitcoin could have some inherent technological issues that may persist over time.

For some intuition, think of security breaches and congestion management — two issues that are

pervasive in Bitcoin (Gandal et al., 2018). In the first case, hackers may target their attacks to the

Bitcoin network depending on how many people use Bitcoin; these attacks are more successful

when the technology is bad.12 In the second one, we could imagine that network congestion is also

more likely to lead to a system failure when the technology is not good.13

At the initial period, agents hold a prior belief probability ξ̄1 ∈ (0, 1) that the quality of Bitcoin

is good, and thus that it will survive into the next period. At later periods, agents use all available

information up to time t to update their beliefs using Bayes’ Rule. There are two possible histories.

In one, Bitcoin fails and agents perfectly learn that its quality is bad; this reflects a “breakdown”

event. In the other, Bitcoin survives and agents remain uncertain, but more optimistic, about its

quality.14 Let us call ξt+1 the no-failure posterior probability that Bitcoin is good. Then, by Bayes’

rule:

ξt+1 =
ξt

ξt + (1− ξt)(1− Φ(At))
. (1)

The denominator in (1) is the chance that the technology does not fail between periods t and t+1.

As Figure 2 shows, posterior beliefs ξt+1 are fixed by adoption At and beliefs ξt today. Also,

notice that higher beliefs ξt translate into higher no-failure posterior beliefs: ∂ξt+1/∂ξt > 0. Like-

wise, more current adoption raises posterior beliefs: ∂ξt+1/∂At > 0. If more people adopt in

period t and Bitcoin survives, then it is more likely that the technology is good. Finally, observe

12Budish (2018) discusses potential collapse scenarios that Bitcoin may face in the future.
13See Huberman et al. (2017) for a Bitcoin congestion model and queues, and Chiu and Koeppl (2017) for the

trade-offs between individual and market transactions and their effects on delay.
14Of course, this is just a technical simplification. For instance, if a good technology were also able to fail but at

a lower rate than a bad one, observing a failure would lead to inconclusive news. More importantly, beliefs would

still update upwards in absence of news, as in our stylized model. Clearly, incorporating such learning process would

overcomplicate the model without bringing additional economic insights.
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that agents are more optimistic about Bitcoin as time goes, given no failures — namely, ξt+1 > ξt.

In each period, each potential adopter choose whether to adopt Bitcoin. Of course, adoption

is more attractive if the Bitcoin system is not expected to fail within the next period (e.g., think

that a transaction with Bitcoin takes one period to be completed). If Bitcoin fails, agents face a

loss, which is normalized to one, but could still choose to adopt depending of the network size.

Indeed, regardless of the quality of technology, individuals benefit from a big “network”, and so

the benefit of using Bitcoin is increasing in how many other individuals are already using Bitcoin,

capturing standard network effects. Assume that this benefit is linear in the mass of adopters,

B(At) ≡ b+(1− b)At, with b ∈ [ϕ, 1−φ].15 This reflects that the benefits of using bitcoin depend

on external and internal sources. All told, given beliefs ξt and adoption rate At, a potential adopter

with adoption cost c adopts if and only if,

B(At)
︸ ︷︷ ︸

benefit

−Φ(At)(1− ξt)
︸ ︷︷ ︸

expected cost

≥ c. (2)

Agents adopt Bitcoin when both the failure rate and their adoption costs are low enough. For-

mally, let us call ai,t ∈ {0, 1} the individual adoption best-reply in period t, given beliefs ξt and

total adoption At, with the interpretation that ai,t = 1 means “adopt” Bitcoin. Thus, ai,t = 1 if

and only if expression (2) holds. Also, call yi,t ≡ P(ai,t = 1|ξt, At) the probability of individual

adoption in period t, given beliefs ξt and total adoption At. Then,

Lemma 2.1. There exist constants (β0, β1, β2, β3) ∈ R
4
+ such that:

yi,t = β0 + β1At + β2ξt + β3Atξt, (3)

where β0 = b− ϕ, β1 = 1− φ− b, β2 = ϕ, and β3 = φ.

Equation (3) is the fundamental equation that motivates our empirical exercise in §4. It captures

three economic forces driving individual adoption: 1) Network externalities (β1); 2) Individual

learning effects (β2); and 3) Information externalities (β3). To see this, notice that a one unit

increment in the network size At or in beliefs ξt have both a direct and indirect effect on the

individual probability of adoption yi,t:

∂yi,t
∂At

= β1
︸︷︷︸

direct effect

+ β3ξt
︸︷︷︸

indirect effect

and
∂yi,t
∂ξt

= β2
︸︷︷︸

direct effect

+ β3At.
︸ ︷︷ ︸

indirect effect

(4)

The indirect effect arises from social learning motives: an increase in the network size speeds up

learning, thereby influencing adoption. Likewise, an increase in beliefs ξt leads to more adoption

15Restricting the domain of b is simply to prevent irrelevant corner solutions.
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which, in turn, reinforces the learning process. The magnitude of this nonlinear indirect effect is

regulated by β3, which is equal to φ by Lemma 2.1. Thus, it is clear that if individuals did not learn

from others, namely, φ = 0, then β3 = 0 and thus the indirect effects would vanish. In such case,

β1 and β2 would only reflect standard network and own learning effects, respectively. Altogether,

parameters β1, β2, β3 allow us to identify whether and how much agents’ adoption decisions are

driven by traditional network benefits and social learning, respectively.

To close the model, we introduce a simple adoption process to capture the gradual nature of

innovation diffusion. Motivated by the well-known Bass model (Bass, 1969), we posit that the

number of new adopters is proportional to the numbers of individuals who have not adopted yet

1 − At. Precisely, starting with an initial mass of adopters A1 = Ā1 ∈ (0, 1), the evolution of

adoption obeys:

At+1 = At + yi,t(1−At). (5)

The model is solved by a joint adoption-belief process (At, ξt)
∞

t=1 obeying (1) and (5), given (3),

and initial conditions A1 = Ā1 and ξ1 = ξ̄1.
16

Proposition 1. (i) There exists a unique solution (At, ξt)
∞

t=1 to the initial value problem; this solu-

tion is increasing over time. (ii) Suppose that adoption costs fall such that c is distributed uniformly

on [0, c̄], with c̄ < 1. Then, the adoption path At and beliefs ξt strictly increase for all time t > 1.

Appendix A.2 proves the existence and uniqueness. To see this, consider Figure 2. Conditional

upon survival, only one path exists: Given initial beliefs ξ̄1 and adoption Ā1 , there is only a single

solution for belief ξ2 and adoption A2, given (1) and (5), respectively. These, in turn, determine

beliefs and adoption ξ3 and A3, by the same logic, and so on. The top-left panel of Figure 3 depicts

the path of adoption and beliefs. We next discuss some testable implications of the model briefly.

First, the joint process (At, ξt) is increasing over time: as the technology keeps surviving, agents

become more optimistic about its quality, leading to more adoption. As seen in the top-right panel

of Figure 3, this implies that individual probability of adoption yi,t is positively related to beliefs ξt

and also to network size At.

Second, Appendix A.3 shows that a decrease in adoption costs raises adoption and beliefs at all

non-trivial time periods — as depicted in the bottom-left panel of Figure 3. By Lemma 2.1, it

follows that individual probability of adoption yi,t rises as adoption cost falls. Intuitively, when

adoption costs fall, individuals are more likely to adopt at any non-trivial belief ξt, leading to

more aggregate adoption At. This leads to a higher (no-failure) posterior beliefs, because not

observing a breakdown provides stronger evidence that the technology is good when there is more

adoption, leading to more individual adoption and so on. Altogether, starting from similar initial

16Notice that along the solution path, agents’ adoption decisions are optimal at any instant t and determined by the

aggregate variables (At, ξt). Thus, our solution notion coincides with a Markovian equilibrium.
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Figure 3: Adoption and Beliefs. All panels assume φ = 0.5, ϕ = 0.1; b = 0.1. The bottom panels

consider a reduction in the adoption cost uniform distribution, from cℓ ∼ U [0, 1] to ch ∼ U [0, 0.8].

conditions, agents with lower adoption costs not only adopt more but are more optimistic about

Bitcoin, leading to cross-sectional differences across agents over time.

3 The Bitcoin Omnibus Survey Data

3.1 Overview of the data set

We use data from the Bank of Canada’s Bitcoin Omnibus Survey (BTCOS). First conducted in

late 2016, the purpose of the BTCOS was originally to serve as a monitoring tool, obtaining basic

measurements of Bitcoin awareness and ownership among the Canadian population.

Respondents to the BTCOS are recruited via an online panel managed by the research firm Ipsos,

and complete the online format survey. The survey’s core components are awareness of Bitcoin;

ownership/past ownership of Bitcoin; amount of Bitcoin holdings; reasons for ownership/non-

ownership. As the survey has evolved over time its scope has broadened based on a demand

for more detailed information about Bitcoin owners’ motivation and their usage behavior. Our

8



analysis relies mostly on the 2017 BTCOS, wherein the following questions were added to the core

components: beliefs about the future adoption/survival of Bitcoin; knowledge of Bitcoin features;

price expectations; use of Bitcoin for payments or person-to-person transfers; ownership of other

cryptocurrencies; cash holdings.

In 2017, 2,623 Canadians completed the BTCOS, of which 117 self-identified as Bitcoin owners.

In addition to content questions, respondents are also asked to provide demographic information,

see Table 1.

- insert Table 1 here -

Most of these questions are required of the respondent to answer in order for the survey to be con-

sidered complete (thereby receiving incentives); however, certain questions such as employment

and income are deemed sensitive, and hence there is missing data present. Sampling for the survey

is conducted to meet quota targets based on age, gender, and region. Once the sample is collected,

the Bank of Canada conducts an in-depth calibration procedure to ensure that the sample is rep-

resentative of the adult Canadian population along with a variety of dimensions (see Henry et al.

(2019b) for details).

3.2 Bitcoin Adoption and Beliefs

Each respondent who indicates that they are aware of Bitcoin answers the question: “Do you cur-

rently have or own any Bitcoin?” A respondent is deemed a Bitcoin adopter if they answer “Yes”

to this question; those who have not heard of Bitcoin are considered non-adopters.17 Table 2 shows

the adoption rates of Bitcoin in 2016 and 2017, both overall and by several demographic categories

such as region, gender, and age. Adoption is noticeably higher among younger Canadians (aged

18-34 years old) with 11.1% self-reporting as Bitcoin owners in 2017, compared with just 3.2%

of those aged 35-54 and only 0.5% among those over 55. Adoption is also higher among males

versus females (6.6% versus 2.1% in 2017). Regional variation is less stark, but adoption is higher

in British Columbia and Quebec, and lowest in the Atlantic provinces.

- insert Table 2 here -

We use some of these characteristics to construct a network measure At in order to capture net-

work effects. In particular, we use the answer “My friends own Bitcoin” from the question “Please

17The first question of the BTCOS asks simply “Have you heard of Bitcoin?” In 2016, 62% of Canadians indicated

the were aware of Bitcoin; this increased to 83% in 2017.
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tell us your main reason for owning Bitcoin,” and we correlate it with the observed characteristics

of the respondents. Specifically, the dominant characteristics, namely, region and age, are used to

construct a local network variable for each respondent in 2017 by assigning the level of adoption

for age categories within their region for the year 2016 respondents. This allows us to proxy for At

in the model.

Finally, respondents who are aware of Bitcoin answer the question: “How likely do you think

it is that the Bitcoin system will survive or fail in the next 15 years?” A sliding scale from 0 to

100 is presented to the respondent, where 0 means they think that Bitcoin will certainly fail, while

100 means they think that Bitcoin will certainly survive. To proxy for beliefs ξt, the answer to this

question is divided by 100 and interpreted as a probability. The mean is 0.45 and the median 0.5.

4 Empirical Strategy and Econometric Methodology

The theoretical model in §2 translates on testing whether and, if so, how much Bitcoin adoption

depends on: (1) network externalities; (2) own learning effects; (3) social learning effects; and (4)

adoption cost. Because individual adoption ait is a binary variable, equation (3) in Lemma 2.1

suggests the following empirical specification:

ait = P(β0 + β1Ait + β2ξit + β3ξitAit + β4Agei + βcXi + βrRj) + ǫit, (6)

where ait is a dummy for Bitcoin adoption of individual i at the time of the evaluation, and ǫit is

a logistically distributed error. Let us make a few observations regarding specification (6). First,

as discussed in §3, Ait reflects the network size of individual i at time t, whereas ξit measures

beliefs of individual i at time t about the survival of Bitcoin. Also, as highlighted in §2, the non-

linear term ξitAit captures information externalities or social learning forces. Finally, the control

variables Xi include demographic characteristics about respondent i at the time of the evaluation,

namely, gender, income, employment, education, number of kids in household, marital status, and

household grocery shopping responsibilities. The controls Rj are regional dummies.

The model implies that the positive parameters β1 and β2 capture direct network effects and

own learning effects. Both effects can be indirectly reinforced via social learning, reflected by

coefficient β3, as seen in expression (4). Adoption cost is captured by β4, the coefficient on age,

as older individuals are more likely to have higher adoption costs. Our empirical specification will

test these predictions and the importance of these effects for individual Bitcoin adoption in 2017.
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4.1 Identification

A simultaneity problem arises because an increase in Bitcoin survival beliefs may increase adop-

tion of Bitcoin, which, in turn, can further reinforce the beliefs about survival. Consequently, ig-

noring this issue would most likely bias the estimates on beliefs about Bitcoin survival downward.

As a byproduct, network effects may also be underestimated.

We propose to break this simultaneity using a control function that uses a two-stage modeling

approach. This approach has technical advantages compared to other methods, given the nonlinear

nature of our empirical model (Wooldridge, 2011). First, other two-stage approaches that, e.g.,

mirror 2SLS, are not suitable for nonlinear models. Also, the CF approach allows for a simpler

test of endogeneity via a Wald test. Finally, one can easily compute standard errors via Bootstrap.

In the first stage, we model the beliefs as a function of observed demographic characteristics,

the nonlinear age effect, and an additional exclusion restriction: the growth in Bitcoin ATMs.18

The nonlinearity of age can be justified as an identification mechanism as there is a difference in

functional form between the two-stage outcomes; this difference is driven by age. Using results in

Escanciano et al. (2016), the nonlinearity condition required for identification is satisfied here, and

thus age squared can provide an additional identification mechanism.

Table 3 presents the regional growth in Bitcoin ATMs over 2016–2017. We collected data on

Bitcoin ATMs in Canada for 2016 and 2017 at the city level from a website called “Coin ATM

Radar” (https://coinatmradar.com/), using Wayback Machine, a digital archive of the

World Wide Web. We then aggregated this information at the the regional level, as seen in Table 3.

Notice that there is no uniform growth on Bitcoin ATMs over different cities in Canada; in

some cities, we see ATM closures (e.g., Surrey and Whistler in BC) or no change (e.g., Maple

Ridge in BC; North Bay and Sault Ste, Marie in Ontario; Red Deer in Alberta or Gatineau in

Quebec). These observations suggest that, while adoption increased substantially (in fact, doubled)

in Canada between 2016 and 2017 (Henry et al., 2017), the regional change in Bitcoin ATMs does

not follow a similar path — at least from a contemporaneous perspective.

- insert Table 3 here -

Our exclusion restriction comes from the supply side. Intuitively, Bitcoin ATMs’ suppliers pro-

vide this service after observing an increase in Bitcoin demand. Indeed, an individual cannot

18Bitcoin ATMs are easy to use and have similar functions compared to a regular ATM, namely, it allows users

to exchange their digital currency credits for cash and vice-versa. Bitcoin ATMs accept cards and some accept cash

too. Although the internet is used for transactions, customers are not linked to their bank accounts but rather to a

crypto-exchange. In 2013, Canada became the first country in the world to open a Bitcoin ATM. Since then, numerous

Bitcoin ATM providers have entered in Canada.
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affect ATM’s placement; however, ATM providers could locate them in places where they have

seen many Bitcoin adopters. Also, installing and running a Bitcoin ATM is costly,19 presumably

leading suppliers to carefully choose their location based on previous observed levels of adoption.

Thus, Bitcoin ATM network size does not reflect current adoption but previous levels of adoption.20

On the other hand, an increase in the Bitcoin ATM network surely affects current beliefs about

Bitcoin survival, as installing a Bitcoin ATM provides public information that the technology is

becoming more prevalent. This signaling channel is indeed credible because it demands upfront

technological investments in the area from the providers. Altogether, our exclusion restriction

meets the properties needed to address the simultaneity of Bitcoin adoption and beliefs.21

To formally check if ATMs’ growth is a valid exclusion restriction, we compute the regional

correlation between the growth in ATMs, growth in Bitcoin adoption, and Bitcoin survival beliefs;

see Table 4. As previously argued, the regional growth in Bitcoin ATMs is not correlated with the

regional growth in Bitcoin Adoption; however, it is indeed correlated with its expected survival.

- insert Table 4 here -

We use the nonlinearity of age and the exclusion restriction as an identification mechanism to

uncover the true effect of beliefs on individual adoption decisions. The proposed identification

mechanism is based on a two-stage control function (CF) approach (Heckman and Robb, 1985),

because of the probabilistic nature of our model (binary dependent variable). In the first stage,

Bitcoin belief ξit is projected on the exclusion restriction and a set of observed characteristics at an

individual and regional level:

ξit = α0 + α1∆ATMjt + α2Age+ α3Age
2 + αcXi + αrRj + uit, (7)

where ∆ATMjt is the growth in Bitcoin ATMs in region j at time t, and uit is an error term.

The residual from the first stage is subsequently used in the second stage as a CF. That is, the

benchmark model in equation (6) is augmented with CF as follows:

ait = P(β0 + β1Ait + β2ξit + β3ξitAit + β4Agei + βcXi + βrRj + βCF ûit) + ǫit, (8)

19These costs involves, e.g., the price of the machine, taxes, installation fees, legal costs, and operation costs. See

https://coinatmradar.com/blog/revenue-and-costs-of-running-a-bitcoin-atm/.
20This is also consistent with rational forward-looking behavior from the suppliers’ perspective, since expectation

about future adoption given all available information today must be a function of adoption levels observed up to today.

Consequently, the decision to install Bitcoin would not capture current Bitcoin adoption, but past adoption levels.
21Of course, other exclusion restrictions could have been considered such as the use of digital wallets. Importantly,

according to Henry et al. (2018), new adopters were mostly young non-educated males with low financial literacy

scores, making the use of Bitcoin ATMs appealing given its simplicity on converting cash to Bitcoin.
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Figure 4: Predictive Margins of Beliefs, Probability of Bitcoin Adoption by Age.

where ûit is the control function obtained from first stage regression and used to control for en-

dogenous selection. The probability of Bitcoin adoption is estimated via a logit based likelihood.

Also, to account for low adoption rate at the evaluation time (about 5%), we estimate for robustness

checks a penalized logistic based likelihood (Heinze and Schemper, 2002).

Before closing this section, we briefly discuss the role of Age2 in equation (7). Observe the

nonlinearity age effect on beliefs compared to that of adoption that is depicted in Figure 4. Moti-

vated by Escanciano et al. (2016), we exploit this relative difference in curvature as an additional

identification mechanism for the second stage model.22

5 Results

The discussion of our results follows the proposed stages of the identification. We start present-

ing the first stage results, estimated via OLS, which examines the agents’ beliefs about Bitcoin

survival. We then discuss the second stage results, estimated via a Logit model, which are related

to individual Bitcoin adoption. The second stage results quantify how much Bitcoin adoption de-

pends on network externalities, own learning effects, social learning effects, and adoption cost.

These testable hypotheses are motivated by our theoretical model.

22This identification mechanism preserves natural features of the data but is not crucial for our main results.
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5.1 Beliefs about Bitcoin survival

Table 5 shows the results of the first stage analysis. The first column displays the results without

accounting for both regional growths in counts of Bitcoin ATMs and nonlinear age effects. The

second column presents the results with such considerations only, whereas the third column shows

the outcome for the full first-stage model.

- insert Table 5 here -

Notice from column (2) the significance of our identification mechanisms in explaining beliefs

(F -stat is equal to 17.28). Both the growth in counts of Bitcoin ATMs by region and age squared

are significant at the 5% and 1% levels, respectively. In particular, age effects are decreasing and

convex (the coefficient for age is negative and significant, while that of age squared is positive and

significant). This suggests that an older individual is less optimistic about the survival of Bitcoin at

increasing rates, namely, the absolute belief divergence gets smaller as people become older. This

is consistent with the theoretical model (Proposition 1) to the extent that older individuals face

higher adoption costs. In general, the first stage results with and without the exclusion restrictions

are similar, as seen in columns (1) and (3) in Table 5.

The regional growth in ATMs is positive and significant for Atlantic Provinces, Quebec and

Ontario, relative to British Columbia. Thus, a relative increase in Bitcoin ATMs leads individuals

to have more optimistic beliefs about Bitcoin survival, ceteris paribus. Interestingly, those without

kids or that are not doing grocery shopping are more pessimistic about Bitcoin’s survival than those

with children or actively doing grocery shopping (c.f. Balutel et al., 2020). A plausible reason

could be that individuals with no children or not actively doing grocery shopping may face tighter

financial constraints, and so have greater adoption costs and lower beliefs (Proposition 1).23

Finally, respondents with higher education were more pessimistic about Bitcoin: the college and

university variables show negative effects compared to the benchmark education category, high

school. The rationale for this finding may be linked to the fact that Bitcoin was seen mostly as a

speculative investment asset as the price was close to its historical peak in 2017. Thus, individuals

with higher education may have seen this high price variation as a short-lived potential bubble

rather than a long-term investment opportunity.

The residual from this first stage estimation is further used as a control function in the second

stage, which contains our main equation of interest.

23Balutel et al. (2020) find that individuals with kids who do grocery shopping are more likely to hold Bitcoin than

those with no kids and do not do grocery shopping. They also find that Bitcoin owners who have kids and do grocery

shopping hold more cash than Bitcoin holders who do not have kids and do not do grocery shopping.
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5.2 Bitcoin adoption

As discussed in §4.1, modeling Bitcoin adoption requires addressing an endogeneity problem

related to a key variable of interest, namely, beliefs about Bitcoin survival. Thus, we use CF as a

correction term in the second stage. As argued in §4.1, CF approach allows for a simple endogene-

ity test via a Wald test. In particular, we reject a Null test of exogeneity as we obtain a value for

the Wald test of 49.82 (with a p-value of 0). This validates our suggested endogeneity correction

via CF. Table 6 presents the Logit results without CF in column (1) and with CF in column (2). We

interact CF with all demographic characteristics to potentially capture further sources of selection

for Bitcoin adoption. We then estimate the model with a Lasso Logit (Hastie et al., 2015).

The Lasso selected only one interaction, which is between the Prairies region and CF. One reason

why Lasso selects this interaction is that the omitted benchmark category, i.e., the growth in Bitcoin

ATMs in British Columbia, has a similar proportion of ATM growth as in Prairies. Therefore, the

information from the omitted category may resurface via the interaction between CF and Prairies.

In turn, after we introduce this interaction in the model, the network effect is amplified. This may

owe to the fact that although the network level in Prairies is the smallest compared to other regions,

it has one of the highest variations between network sizes across age cohorts (three times smaller

network size for older than for the younger group). Thus, CF amplifies the effect of this variation in

favour of the younger cohort (which is the driving force of the network effect), while CF attenuates

the selected interaction effect. Indeed, the interaction becomes insignificant in the Logit model,

although Lasso considered it relevant for the Bitcoin adoption model (8). The results of the Logit

after Lasso selection are presented in Table 6, column (3).

Additionally, in columns (4) and (5) we add the penalized likelihood Logit results to account

for low adoption rates, as discussed in 4.1. Column (4) presents the results with CF, whereas

column (5) with the CF and the CF interaction. The results are similar in all specifications, except

that network effects increase in importance when the CF interaction is accounted for.

- insert Table 6 here -

Across the board, it is clear that beliefs about the survival of Bitcoin are correlated with Bitcoin

adoption. The coefficient on beliefs is significant at the 1% level in each of the considered mod-

els. Higher beliefs about Bitcoin survival are related to a greater likelihood of adopting Bitcoin.

This effect is amplified after we control for endogeneity — the magnitude of the marginal effect is

roughly three times greater. The control function variable is significant at 5% in both specifications

(logit and penalized likelihood logit), indicating that the baseline models provide a biased estimate

of the effect of beliefs on adoption. When CF is introduced, the strong correction of beliefs indi-

cates that early Bitcoin adopters have already high beliefs about Bitcoin’s future survival.
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Margins of Probability of Adoption as a function of Beliefs

Figure 5: The Marginal Effects of Probability of Bitcoin Adoption by Beliefs

As of network effects, the relationship is positive and significant at the 10% level for the Logit

models with and without control function, respectively. The model with CF interaction, selected

by Lasso, amplifies the network effect and improves its significance. For the penalized likelihood

Logit models there is a significance at the 10% level for both specifications (with both CF and

CF interaction). The marginal effects coefficients (see Table 7) on the local network variable are

positive and significant, showing a marginal change between the model without and with control

function. The magnitude of the marginal effect changes when the CF interaction is added, indi-

cating that a high Bitcoin adoption among peers is associated with high a propensity to adopt, as

predicted by the theoretical model in §2.

- insert Table 7 here -

Altogether, our empirical results suggest that both network and own learning effects are impor-

tant forces driving Bitcoin adoption. However, we see no evidence of social learning effects, as

measured by the interaction term Aitξit. Specifically, our analysis shows that a one percentage

point increase in the network size raises the probability of Bitcoin adoption by 0.96 percentage

points (for the model with both CF and CF interaction), whereas a one percentage point increase in

Bitcoin survival beliefs increases the adoption chance by 0.17 percentage points. Also, we find that

one year increase in age lowers the probability of adoption by 0.03 percentage points. This may
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Figure 6: The Marginal Effects of Probability of Bitcoin Adoption by Local Network

suggest a nonlinear effect of age with higher age groups individuals making few or no adoptions,

leading to a low but significant average effect of the age.

These empirical results are consistent with the theoretical model presented in §2 and with the

simulations depicted in Figure 3. In particular, Figure 5 shows that the probability of adoption as a

function of beliefs increases (with a steeper increase if the beliefs about expected Bitcoin survival

pass the median). Moreover, Figure 5 depicts a decomposition of the margins for the probability

of adoption by age categories (below and above 35 years old). Notice that younger individuals are

more optimistic than older individuals. These age group differences are statically significant,24 as

seen in the top results of Table 9.

- insert Table 9 here -

Similarly, the top panel of Figure 6 shows that the probability of adoption as a function of net-

work size is also increasing. The bottom panel considers a decomposition of the margins for the

probability of adoption by age categories (below and above 35 years old). We see that younger

individuals adopt more than the older individuals. These age group differences are also statically

significant;25 see the bottom results of Table 9.

24The joint hypothesis test for all specified contrasts rejects equality of the two age groups paths; χ2-test is 35.15

and highly significant at 1%.
25The joint hypothesis test for all specified contrasts rejects equality of the two age groups paths; χ2-test is 49.62

and is significant at 1%.
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Figure 7: The Marginal Effects of Probability of Bitcoin Adoption by Local Network

Next, we perform a counterfactual analysis. Figure 6 shows that the network sizes at the time

of measurement (i.e., 2017) were small. To understand what would happen to the probability of

Bitcoin adoption if the network size were to increase, we perform a counterfactual in which the

network size was increased until the individual probability of adoption reaches one. This happens

when the network size increases 400% (i.e., by a factor of 4). As seen in Figure 7, an increase

in network size shows a continuation in the increase in Bitcoin adoption until the current network

size is about four times larger than the current one (reaches about 15% of the specific groups

population). Both age groups reach the maximum of adoption at about the same network size. The

age groups differences in network size creation can be explained by the fact that older individuals

face higher costs when forming networks, as there are inherent costs of accessing technologies that

facilitate participation in discussion groups, etc.

Although we are in an early stage of diffusion, network effects are important for technology

adoption.26 Indeed, Table 8 indicates that network effects are dominant for the young cohort: about

17.2% of the young respondents stated this as the main reason for owning Bitcoin, whereas this

number drops to below 3% for older age groups. Another plausible reason why young individuals

are inclined to adopt Bitcoin is that they may have some constraints to open a formal financial

account, as these ones are associated with paperwork, regulations, and fees. Therefore, it maybe

easier and cheaper for young people to just buy Bitcoin directly at an ATM. Adoption by young

individuals may also be driven by other reasons such as speculation, technology-related, payments

26Rogers (2010) suggests that early adopters are usually young and socially active individuals.
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related, and trust/privacy issues (see Table 8 for further details).

- insert Table 8 here -

Finally, our results also emphasize the role of individual characteristics. We find that the likeli-

hood of Bitcoin adoption declines with being female and living in regions outside British Columbia.

Conversely, the probability of adoption increases with education and employment: respondents

with higher education (university) in 2017 were more optimistic about Bitcoin adoption.

6 Concluding Remarks

Motivated by an empirical observation that Bitcoin adopters are more optimistic about the sur-

vival of Bitcoin than non-adopters, this paper develops a tractable Bitcoin adoption model with

externalities. The model predicts how individual learning effects, payoff-based network external-

ities, and information externalities shape adoption decisions. We then connect the theory with

detailed micro-level data from the BTCOS 2016 and 2017 surveys in order to test and quantify

the behavioral determinants of individual Bitcoin adoption. To address the simultaneity between

adoption and beliefs, we consider a two-stage control function approach, in which the first stage

estimates beliefs using an exclusion restriction — the regional growth in Bitcoin ATMs. The sec-

ond stage then estimates the individual probability of Bitcoin adoption using the residual from the

first stage as a control function to correct for endogeneity.

The data validate several testable predictions. First, we find that Bitcoin survival beliefs, network

effects, and adoption costs significantly impacted Bitcoin adoption in 2017. Our results show that

a one percentage point increase in the network size raises the probability of Bitcoin adoption by

0.96 percentage points, whereas a one percentage point increase in Bitcoin survival beliefs raises

the chance of Bitcoin adoption by 0.17 percentage points. Also, we find that one year increment

in age lowers the probability of adoption by 0.03 percentage points. The small age effect is driven

by the substantial variation in beliefs and network sizes between young and old individuals.

Finally, our results provide no evidence that social learning had a significant effect on individ-

ual adoption in 2017. This may be explained by segmentation effects across age groups, where

old individuals may not be learning from the experimentation of young adopters. As for future

work, a structural estimation of the model parameters seems interesting, as this would allow us to

reconstruct the adoption and belief paths and perform counterfactual analysis.
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A Appendix: Technical Details of Proofs

A.1 The Probability of Adoption: Proof of Lemma 2.1

Notice that, given the optimality condition (2), we have:

P(ai,t = 1|ξt, At) = P({c ≤ B(At)− Φ(At)(1− ξt)} |ξt, At)

= B(At)− Φ(At)(1− ξt)

= b+ (1− b)At − (ϕ+ φAt)(1− ξt)

= b− ϕ+ (1− b− φ)At + ϕξt + φAtξt

= β0 + β1At + β2ξt + β3Atξt,

where we used that c ∼ U [0, 1] and that B(At)− Φ(At)(1− ξt) ∈ [0, 1] for all At, ξt ∈ [0, 1]. �

A.2 Existence and Uniqueness: Proof of Proposition 1-(i)

For expositional clarity, we examine the continuous-time version of the model.

BELIEFS. We now show that the belief path is S-shaped. To this end, consider two periods,

namely, t and t+ dt. Then, applying Bayes’ rule (1), given At, yields a posterior belief:

ξt+dt =
ξt

ξt + (1− ξt)(1− Φ(At)dt)
=

ξt
1− (1− ξt)Φ(At)dt

.

Subtracting ξt and dividing both sides by dt we obtain:

ξt+dt − ξt
dt

=
ξt(1− ξt)Φ(At)

1− (1− ξt)Φ(At)dt
.

Taking dt → 0 and using Lemma 2.1 yields the following law of motion,

ξ̇t = ξt(1− ξt)(β2 + β3At).

ADOPTION. Consider the adoption process (5) and two periods t and t+ dt. Then,

At+dt = At + P(ai,t = 1|ξt, At)(1− At)dt.

Next, subtract At, then divide both sides by dt, and finally take dt → 0. Then, by Lemma 2.1:

Ȧt = (β0 + β1At + β2ξt + β3Atξt)(1− At)
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Define x = (A, ξ) and X : R2
+ 7→ R

2
+, where

X (x) = [(β0 + β1A+ β2ξ + β3Aξ)(1− A), ξ(1− ξ)(β2 + β3A)] ∈ R
2
+.

EXISTENCE AND UNIQUENESS. We will show that the initial value problem (IVP) below has a

unique solution.

ẋt = X (xt), x1 = (Ā1, ξ̄1) ∈ R
2
+

Indeed, notice that X (x) is continuously differentiable, because its partial derivatives are clearly

continuous, and so X (·) is locally Lipschitz continuous in x. Thus, by the Picard-Lindelöf The-

orem (Theorem 2.2 in Teschl (2012)), there exists a unique local solution t ∈ [0, T ] 7→ x∗

t of the

IVP, for some T > 0. �

A.3 The Effects of Adoption Costs: Proof of Proposition 1-(ii)

Suppose adoption costs are uniformly distributed between [0, c̄], c̄ ≥ 1.27 In the baseline model,

c̄ = 1, for expositional clarity. We now examine the effects of an increase in adoption costs c̄.

Formally, the distribution of adoption costs increases in the first-order stochastic dominance sense.

Consider c̄ℓ and c̄h with c̄h > c̄ℓ. Likewise, consider xℓ
t ≡ (Aℓ

t, ξ
ℓ
t ) and xh

t ≡ (Ah
t , ξ

h
t ), solving

ẋℓ
t = X ℓ(xℓ

t) and ẋh
t = X h(xh

t ), xℓ
1 = xh

1 = (Ā1, ξ̄1),

where we scale the adoption probability in Lemma 2.1 with the respective scalars c̄ℓ and c̄h:

X ℓ(A, ξ) ≡ [c̄−1

ℓ (β0 + β1A + β2ξ + β3Aξ)(1−A), ξ(1− ξ)(β2 + β3A)];

X h(A, ξ) ≡ [c̄−1

h (β0 + β1A + β2ξ + β3Aξ)(1−A), ξ(1− ξ)(β2 + β3A)].

The paths t 7→ xℓ
t and t 7→ xℓ

h are well-defined, following the same logic given in §A.2 and using

the Picard-Lindelöf Theorem (Theorem 2.2 in Teschl (2012)).

Next, notice that since c̄h > c̄ℓ, we have ẋh
t = X h(xh

t ) ≤ X ℓ(xh
t ). Therefore, it follows that

ẋh
t − X ℓ(xh

t ) ≤ ẋℓ
t − X ℓ(xℓ

t), and xℓ
1 = xh

1

Finally, since X ℓ(x) is continuously differentiable (and thus Lipschitz continuous), we have that

xh
t ≤ xℓ

t by Theorem 1.3 in Teschl (2012). Moreover, since xh
t < xℓ

t for t > 1, the inequality

remains strict true for all later times. That is, Ah
t < Aℓ

t and ξht < ξℓt for t > 1. �

27The results of this section trivially extend to any continuously differentiable cumulative distribution function.
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B Tables

Table 1: Sample description, 2017 Bitcoin Omnibus Survey

% N

Overall N 2,623

Age 18-34 0.250 657

35-54 0.409 1,074

55+ 0.340 892

Total 2,623

Gender Male 0.463 1,214

Female 0.537 1,409

Total 2,623

Region BC 0.144 377

Prairies 0.187 491

Ontario 0.340 891

Quebec 0.244 639

Atlantic 0.086 225

Total 2,623

Income <50k 0.373 877

50k-99k 0.398 935

100k+ 0.229 538

Total 2,350

Education High School or less 0.226 592

College / trade school 0.346 908

University 0.428 1,123

Total 2,623

Employment Retired 0.224 581

Employed 0.596 1,546

Unemployed / not in labour force 0.180 467

Total 2,594

Number of kids Kids 0.242 636

No kids 0.758 1,987

Total 2,623

Marital status Married / common law 0.593 1,555

Not married or common law 0.407 1,068

Total 2,623

Grocery shopping All of it 0.544 1,427

Not all of it 0.456 1,196

Total 2,623

This table shows the distribution (proportion) and counts of demographic variables asso-

ciated to respondents from the 2017 Bitcoin Omnibus Survey. The total sample size was

N = 2, 623. The first column shows the proportion of respondents in each category,

while the second column reports total counts. We use these individual-level characteris-

tics as control variables in subsequent regressions.
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Table 2: Bitcoin adoption

rates in 2016 and 2017:

2016 2017

Overall % 3.2 4.3

N 58 117

Age 18-34 9.1 11.1

35-54 1.6 3.2

55+ 0.5 0.5

Gender Male 4.4 6.6

Female 2.2 2.1

Region BC 2.8 5.2

Prairies 2.1 4.1

Ontario 2.5 3.9

Quebec 5.5 5.1

Atlantic 3.2 3.1

These tables show the adoption rates

of Bitcoin among several demographic

groups in 2016 and 2017. Data are from

the Bitcoin Omnibus Survey and have
been weighted to be reflective of the Cana-

dian population.
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Table 3: Growth in Bitcoin ATMs across Canadian: Cities, Provinces and

Regions; 2016-2017

BtC ATM Year Year ATM Growth

City Province Region 2016 2017 2017-2016

Halifax Nova Scotia Atlantic Provinces 0 3 3

Total Atlantic Provinces 0 3 3

Delta British Colombia British Colombia 0 1 1

Kelowna British Colombia British Colombia 0 4 4

Maple Ridge British Colombia British Colombia 1 1 0

Nanaimo British Colombia British Colombia 0 1 1

Surrey British Colombia British Colombia 1 0 -1

Vancouver CA British Colombia British Colombia 18 49 31

Victoria British Colombia British Colombia 1 4 3

Whistler British Colombia British Colombia 2 1 -1

Total British Colombia 23 61 38

London Ontario Ontario 0 4 4

North Bay Ontario Ontario 1 1 0

Ottawa Ontario Ontario 4 15 11

Sault Ste, Marie Ontario Ontario 1 1 0

Sudbury Ontario Ontario 0 1 1

Toronto Ontario Ontario 45 127 82

Total Ontario 51 149 98

Calgary Alberta Prairies 14 29 15

Edmond Alberta Prairies 7 10 3

Grand Prairie, AB Alberta Prairies 0 3 3

Red Deer Alberta Prairies 1 1 0

Subtotal Alberta Prairies 22 43 21

Regina Saskatchewan Prairies 0 3 3

Saskatoon Saskatchewan Prairies 1 2 1

Subtotal Saskatchewan Prairies 1 5 4

Winnipeg Manitoba Prairies 2 5 3

Subtotal Manitoba Prairies 2 5 3

Total Prairies 25 53 28

Gatineau Quebec Quebec 1 1 0

Montreal Quebec Quebec 33 51 18

Quebec City Quebec Quebec 1 2 1

Total Quebec 35 54 19

The data is taken from coinatmradar.com.

Counts of Bitcoin ATMs are reported by the city/province/region.
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Table 4: Correlation of Bitcoin ATMs with Bitcoin Adoption and

Bitcoin Survival

Correlation Bitcoin ATM Growth (2016-2017)

Bitcoin Ownership Growth (2016-2017) -0.0507

Expected Survival 0.4113

The correlations are computed using the data from the 2016 and 2017 Bitcoin Omnibus Surveys

(BTCOS) and the Coin ATM Radar. The computed correlations are based on the regional varia-
tion in Bitcoin ATM growth, Bitcoin Adoption growth and Expected Bitcoin Survival.

The Growth in Bitcoin Adoption between 2016 and 2017 was computed by weighting the sample

size in 2016 to match the sample size in 2017.
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Table 5: First Stage: Estimation of Expected Survival

VARIABLES (1) (2) (3)

Age -0.00220*** -0.00534***

(0.000331) (0.00186)

Female 0.00335 0.00362

(0.00974) (0.00977)

Income: 50k-99k 0.00606 0.00708

(0.0115) (0.0114)

Income: 100k+ -0.00993 -0.00768

(0.0141) (0.0142)

Employment: employed 0.0114 0.0168

(0.0107) (0.0112)

College/CEGEP/Trade school -0.0223* -0.0206

(0.0130) (0.0130)

University -0.0269** -0.0276**

(0.0127) (0.0127)

No kids -0.0528*** -0.0563***

(0.0124) (0.0126)

Not married or CL -0.00644 -0.00549

(0.0118) (0.0119)

HH grocery shop: Not at all -0.0274** -0.0277**

(0.0110) (0.0111)

∆ATM AT 0.0153** 0.0157**

(0.00680) (0.00682)

∆ATM PR 5.35e-05 2.75e-05

(0.000595) (0.000596)

∆ATM QC 0.00169** 0.00164*

(0.000847) (0.000843)

∆ATM ON 0.000304** 0.000319**

(0.000154) (0.000154)

Age2 -2.64e-05*** 3.36e-05*

(3.06e-06) (1.95e-05)

Constant 0.618*** 0.492*** 0.660***

(0.0255) (0.0157) (0.0461)

Observations 2,623 2,623 2,623

F-stat 11.67*** 17.28*** 8.55***

∆ATM is the exclusion restriction measured by the growth in Bitcoin ATMs (from 2016 to

2017) at the regional level, Age2 is the second exclusion restriction.

Column (1) is the first stage model without exclusion restrictions only.

Column (2) is the model with only exclusion restrictions ∆ATM and Age2.
Column (3) is the full first-stage model.

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Second Stage: Estimation of Adoption Rate

VARIABLES (1) (2) (3) (4) (5)

ξit 4.398*** 12.56*** 12.47*** 12.52*** 12.66***

(0.856) (4.052) (4.277) (3.783) (4.012)

Ait 55.89* 56.61* 70.65** 59.69* 64.49*

(33.55) (33.29) (37.04) (35.54) (35.85)

ξit ×Ait -28.75 -27.80 -48.26 -31.34 -37.27

(37.68) (37.35) (40.93) (44.12) (45.93)

Age -0.0443*** -0.0226* -0.0221* -0.0233 -0.0229

(0.0117) (0.0148) (0.0128) (0.0150) (0.0150)

Female -1.176*** -1.207*** -1.216*** -1.174*** -1.186***

(0.224) (0.223) (0.237) (0.225) (0.226)

Income: 50k-99k -0.205 -0.303 -0.303 -0.296 -0.112

(0.263) (0.263) (0.277) (0.252) (0.295)

Income: 100k+ -0.369 -0.343 -0.352 -0.318 -0.323

(0.306) (0.307) (0.309) (0.315) (0.317)

Atlantic -0.966** -1.363*** -1.362** -1.318*** -1.334***

(0.464) (0.491) (0.449) (0.501) (0.502)

Prairies -0.684* -0.668* -0.385 -0.652* -0.657*

(0.362) (0.360) (0.348) (0.352) (0.351)

Ontario -0.525* -0.791** -0.794** -0.796** -0.806**

(0.288) (0.316) (0.366) (0.329) (0.329)

Quebec -1.076** -1.358*** -1.374*** -1.356*** -1.384***

(0.494) (0.506) (0.449) (0.490) (0.491)

Employment: employed 0.874*** 0.732** 0.750** 0.698** 0.688**

(0.309) (0.319) (0.318) (0.364) (0.293)

College/CEGEP/Trade school -0.0919 0.107 0.080 0.0993 0.106

(0.321) (0.329) (0.327) (0.311) (0.330)

University 0.374 0.597** 0.582** 0.582** 0.585*

(0.295) (0.303) (0.293) (0.289) (0.318)

Not married or CL -0.193 -0.053 -0.0532 -0.0466 -0.0395

(0.224) (0.231) (0.234) (0.237) (0.237)

ûit -8.058** -7.521** -8.289** -7.953**

(4.034) (3.944) (3.385) (3.988)

ûit× Prairies -1.868 -1.060

(1.342) (0.943)

Constant -3.737*** -8.382*** -8.436*** -8.215*** -8.380***

(0.988) (2.368) (2.218) (2.368) (2.382)

Observations 2,623 2,623 2,623 2,623 2,623

ξit is Bitcoin survival beliefs variable and Ait is the local network variable.

ûit is the control function, CF, (the residual from the first stage regression).

Column (1) is the benchmark second stage model for Bitcoin adoption (without the CF ).

Column (2) is the model in column (1) augmented with the CF .

Column (3) is the model in (2) augmented with ûit× Prairies selected by Lasso.

Columns (4) and (5) parallel (2) and (3) but estimated with a penalized logistic based likelihood.

Bootstrapped standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Second Stage: Marginal Effects on The Probabil-

ity of Adoption

VARIABLES (1) (2) (3)

ξit 0.061*** 0.172*** 0.169***

(0.013) (0.058) (0.057)

Ait 0.780* 0.787* 0.958**

(0.451) (0.456) (0.468)

ξit ×Ait -0.393 -0.399 -0.655

(0.518) (0.511) (0.527)

Age -0.0006*** -0.0003* -0.0003*

(0.0002) (0.0002) (0.0002)

Female -0.018*** -0.018*** -0.018***

(0.005) (0.004) (0.004)

Income: 50k-99k -0.003 -0.004 -0.004

(0.003) (0.003) (0.004)

Income: 100k+ -0.0036 -0.004 -0.004

(0.004) (0.004) (0.005)

Prairies -0.007** -0.007** -0.009**

(0.003) (0.003) (0.004)

Ontario -0.007** -0.009*** -0.0097**

(0.004) (0.005) (0.0045)

Quebec -0.012*** -0.014** -0.014***

(0.004) (0.005) (0.0045)

Atlantic -0.009*** -0.012*** -0.011***

(0.004) (0.003) (0.0036)

Employment: employed 0.01*** 0.009 0.009***

(0.004) (0.005) (0.0036)

College/CEGEP/Trade school -0.001 0.005 0.001

(0.004) (0.004) (0.005)

University 0.005 0.014** 0.008*

(0.004) (0.006) (0.005)

Not married or CL -0.002 -0.0006 -0.0007

(0.003) (0.003) (0.003)

ûit -0.112** -0.106*

(0.056) (0.063)

ûit× Prairies -0.025

(0.018)

Observations 2,623 2,623 2,623

ξit is Bitcoin survival beliefs and Ait is the local network.

ûit is the control function (CF), the residual from the first stage regression.

Column (1) shows the marginal effects (ME) of the benchmark second stage model for

Bitcoin adoption (without the CF ) .
Column (2) shows the ME of the model in (1) augmented with the CF .

Column (3) shows the ME of the model in (2) augmented with the CF interaction se-

lected by Lasso.

*** p<0.01, ** p<0.05, * p<0.1
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Table 8: Reasons for owning Bitcoin

Counts Percentage

Age /Reasons for owning Bitcoin 18-34 35-54 55+ 18-34 35-54 55+

Payment related 6 5 0 8.11 13.51 0

Store-of-value (investment) 37 18 6 50 48.648 100

Trust/privacy related 4 3 0 5.405 8.11 0

Technology related 12 9 0 16.22 24.32 0

My friends own Bitcoin 13 1 0 17.56 2.70 0

Other 2 1 0 2.70 2.70 0

Total 74 37 6 100 100 100

Table 9: Margins of Proba-

bility of Adoption by ξit and

Ait - Contrast by age group

ξit df χ2 P > χ2

0.1 1 8.32*** 0.0039

0.25 1 6.66*** 0.0099

0.5 1 21.62*** 0.000

0.75 1 4.09* 0.0431

0.9 1 1.58 0.2092

Joint 5 35.15*** 0.000

Ait df χ2 P > χ2

0.01 1 7.68*** 0.0056

0.02 1 29.07*** 0.000

0.03 1 36.36*** 0.000

0.04 1 21.03*** 0.000

0.05 1 18.24*** 0.000

Joint 5 49.62*** 0.000

ξit is Bitcoin survival beliefs and Ait is
the local network.

Joint χ2 - joint hypothesis test for all

specified contrasts - chi square test.

*** p<0.01, ** p<0.05, * p<0.1
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VÁSQUEZ, J. AND K. NIELD (2019): “Bitcoin experimentation in Canada: Adoption and beliefs,”

mimeo.

WOOLDRIDGE, J. (2011): Control Function and Related Methods, LABOUR Lectures, EIEF,

Michigan State University.

WOOLDRIDGE, J. M. (2015): “Control function methods in applied econometrics,” Journal of

Human Resources, 50, 420–445.

32


	Introduction
	A Model Bitcoin Adoption and Learning
	The Bitcoin Omnibus Survey Data
	Overview of the data set
	Bitcoin Adoption and Beliefs

	Empirical Strategy and Econometric Methodology
	Identification

	Results
	Beliefs about Bitcoin survival
	Bitcoin adoption

	Concluding Remarks
	Appendix: Technical Details of Proofs
	The Probability of Adoption: Proof of Lemma 2.1
	Existence and Uniqueness: Proof of Proposition 1-(i)
	The Effects of Adoption Costs: Proof of Proposition 1-(ii)

	Tables

